Subspace Approximated Matrices in Numerical Linear Algebra

Jan Brandts, Ricardo da Silva
Korteweg-de Vries Institute for Mathematics, Universiteit van Amsterdam

For $n \times n$ matrices A and A_{0} and a sequence of subspaces $\{0\}=\mathcal{V}_{0} \subset \cdots \mathcal{V}_{n}=$ \mathbb{R}^{n} with $\operatorname{dim}\left(\mathcal{V}_{k}\right)=k$, the k-th subspace approximated matrix A_{k} is defined as

$$
A_{k}=A+\Pi_{k}\left(A_{0}-A\right) \Pi_{k},
$$

where Π_{k} is the orthogonal projection on \mathcal{V}_{k}^{\perp}. As a consequence, both $A_{k} v=$ $A v$ and $v^{*} A_{k}=v^{*} A$ for all $v \in \mathcal{V}_{k}$, and thus A_{k} gradually changes from A_{0} into A. Moreover, in practice, \mathcal{V}_{k+1} may depend on A_{k}, in order to enforce A_{k+1} to be closer to A in some sense. By choosing A_{0} as a simple approximation of A, this turns the subspace approximated matrices into interesting preconditioners for linear algebra problems involving A.

In this presentation we will discuss the use of subspace approximated matrices in eigen value computations, and in solving linear systems of equations.

