Analysis of geosynthetic tubes filled with several liquids

Josef Malík

Department of Applied Mathematics and Computer Science

Institute of Geonics

PANM 15

7-11 June 2010 - p. 1/32

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 2/32

Geotextile tube instalation

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 2/32

Geotextile tube instalation

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 2/32

The problem is 2D in nature.

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 3/32

Hypotheses

Hypotheses

The problem is 2D in nature.

The geosynthetic shell is thin, flexible, and has negligible weight per unit length.

7-11 June 2010 - p. 3/32

Hypotheses

The problem is 2D in nature.

The geosynthetic shell is thin, flexible, and has negligible weight per unit length.

The material filling the tube is a slurry, and therefore a hydrostatic state of stresses exists inside the tube. Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 3/32

Hypotheses

The problem is 2D in nature.

The geosynthetic shell is thin, flexible, and has negligible weight per unit length.

The material filling the tube is a slurry, and therefore a hydrostatic state of stresses exists inside the tube.

No shear stresses develop between the slurry and geosynthetic.

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion ____

7-11 June 2010 - p. 3/32

Nomenclature

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

p – pumping pressure

g – gravitational acceleration

H – tension in geosynthetic

 ϱ – specific weight

 α – angle between tangent to the tube and y-axis

PANM 15

7-11 June 2010 - p. 4/32

Cross section

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

PANM 15

7-11 June 2010 - p. 5/32

Basic equations

Geotextile tube instalation Hypotheses Nomenclature Cross section Basic equations Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

$$\frac{d}{ds}\left(H\frac{dx}{ds}\right) + \frac{dy}{ds}\left(g\rho y + p\right) = 0,$$
$$\frac{d}{ds}\left(H\frac{dy}{ds}\right) - \frac{dx}{ds}\left(g\rho y + p\right) = 0,$$

PANM 15

7-11 June 2010 - p. 6/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

Let the length of the perimeter L > 0 and the pumping pressure p > 0 be given.

PANM 15

7-11 June 2010 - p. 7/32

Geotextile tube instalation

Let the length of the perimeter L > 0 and the pumping pressure p > 0 be given.

Find the values of parameters H > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 7/32

Let the length of the perimeter L > 0 and the pumping pressure p > 0 be given.

Find the values of parameters H > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 7/32

Let the length of the perimeter L > 0 and the pumping pressure p > 0 be given.

Find the values of parameters H > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

$$L = 2s_C + 2x(s_C).$$

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 7/32

Geotextile tube instalation

Hypotheses

Let the length of the perimeter L > 0 and the height h > 0 be given.

Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 8/32

Let the length of the perimeter L > 0 and the height h > 0 be given.

Find the values of parameters H > 0, p > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

7-11 June 2010 - p. 8/32

Geotextile tube instalation

Let the length of the perimeter L > 0 and the height h > 0 be given.

Find the values of parameters H > 0, p > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 8/32

Let the length of the perimeter L > 0 and the height h > 0 be given.

Find the values of parameters H > 0, p > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

$$L = 2s_C + 2x(s_C),.$$
$$h = y(s_C),$$

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 8/32

UON

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

Let the length of the perimeter L > 0 and the area of the cross section V > 0 be given.

PANM 15

7-11 June 2010 - p. 9/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

Let the length of the perimeter L > 0 and the area of the cross section V > 0 be given.

Find the values of parameters H > 0, p > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

PANM 15

7-11 June 2010 - p. 9/32

Geotextile tube instalation

Let the length of the perimeter L > 0 and the area of the cross section V > 0 be given.

Find the values of parameters H > 0, p > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 9/32

Let the length of the perimeter L > 0 and the area of the cross section V > 0 be given.

Find the values of parameters H > 0, p > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$.

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$
$$L = 2s_C + 2x(s_C),.$$

$$V = 2 \int_{0}^{\infty} x \frac{dy}{ds} ds,$$

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion ____

7-11 June 2010 - p. 9/32

UON

Geotextile tube instalation

Hypotheses

Nomenclature Cross section Basic equations Problem 1 Problem 2

Let the pumping pressure p > 0 and the height of the tube h > 0 be given.

Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 10/32

Let the pumping pressure p > 0 and the height of the tube h > 0 be given.

Find the values of parameters H > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$. The value of L is given by

$$L = 2s_C + 2x(s_C).$$

Geotextile tube instalation **H**vpotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 10/32

Geotextile tube instalation **H**vpotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

Let the pumping pressure p > 0 and the height of the tube h > 0 be given.

Find the values of parameters H > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$. The value of L is given by

 $L = 2s_C + 2x(s_C).$

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

PANM 15

7-11 June 2010 - p. 10/32

Geotextile tube instalation **H**vpotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion ____

Let the pumping pressure p > 0 and the height of the tube h > 0 be given.

Find the values of parameters H > 0, $s_C > 0$ and the solutions x(s), y(s) to Basic equations on the interval $(0, s_C)$. The value of L is given by

 $L = 2s_C + 2x(s_C).$

$$\frac{dy}{ds}(s_O) = \frac{dy}{ds}(s_C) = 0,$$

$$h = y(s_C),$$

PANM 15

7-11 June 2010 - p. 10/32

New parameter

Geotextile tube instalation

Hypotheses

$$L(p,H) = 2 \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{H(1-\sin\theta)d\theta}{(p^2 + 2g\rho H(1+\sin\theta))^{\frac{1}{2}}}$$

Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 11/32

New parameter

$$L(p,H) = 2 \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{H(1-\sin\theta)d\theta}{(p^2 + 2g\rho H(1+\sin\theta))^{\frac{1}{2}}}$$

$$V(p,H) = -2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{H\sin\theta (p^2 + 4g\rho H)^{\frac{1}{2}} d\theta}{(p^2 + 2g\rho H(1 + \sin\theta))^{\frac{1}{2}} g\rho}$$

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 11/32

New parameter

$$L(p,H) = 2 \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{H(1-\sin\theta)d\theta}{(p^2 + 2g\rho H(1+\sin\theta))^{\frac{1}{2}}}$$

$$V(p,H) = -2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{H\sin\theta \left(p^2 + 4g\rho H\right)^{\frac{1}{2}} d\theta}{(p^2 + 2g\rho H(1+\sin\theta))^{\frac{1}{2}} g\rho}$$

$$h(p,H) = \frac{(p^2 + 4g\rho H)^{\frac{1}{2}} - p}{g\rho}$$

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 11/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height

Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 12/32

Let the positive number \overline{L} , \overline{p} be given. Then Problem 1 has exactly one solution.

Let the positive number \overline{L} , \overline{h} be given and the following inequality

7

$$\bar{n} < \frac{L}{\pi}$$

hold. Then Problem 2 has a solution.

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 13/32

Let the positive numbers \overline{L} , \overline{V} be given and the following inequality

 $\bar{V} < \frac{\bar{L}^2}{4\pi}$

hold. Then Problem 3 has a solution.

Geotextile tube instalation

Hypotheses

Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 14/32

Geotextile tube instalation

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 15/32

Let the positive number \bar{h} , \bar{p} be given. Then Problem 4 has exactly one solution.

7-11 June 2010 - p. 16/32

7-11 June 2010 - p. 16/32

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 16/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion 0000

7-11 June 2010 - p. 16/32

Case study - constant tension

7-11 June 2010 - p. 17/32

Case study - constant tension

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 17/32

Case study - constant tension

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 17/32

More liquids - cross section

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 18/32

More liquids - formulation and conditions

Geotextile tube instalation

$$\rho_1 > \rho_2 > \ldots > \rho_n$$

$$\sum_{i=1}^{n} v_i < \frac{l^2}{4\pi} \,,$$

$$p_i = p_{i-1} - g\rho_i(y_i - y_{i-1}), \quad i = 1, \dots, n,$$

$$p_0 > p_1 > \ldots > p_n$$

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 19/32

More liquids - basic equations

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure

Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 20/32

$$\frac{ds}{ds} = \sin \theta(s),$$

$$t \frac{d\theta}{ds} = p_i - g\rho_{i+1}(y(s) - y_i), \quad i = 0, 1, \dots, n-1,$$

 $\frac{dx}{dt} = \cos\theta(s)$,

 s_i

$$x_n \equiv x(s_n) = 0, \ y_0 \equiv y(s_0) = 0$$

$$\theta_0 \equiv \theta(s_0) = 0, \ \theta_n \equiv \theta(s_n) = \pi$$

$$s_n = l/2$$

 $\int x \frac{dy}{ds} ds = v_i, \quad i = 1, \dots n.$

More liquids - reformulation

Geotextile tube instalation

$$\frac{dx}{d\theta} = \frac{dx}{ds} \left(\frac{d\theta}{ds}\right)^{-1} = \frac{t \cos\theta}{p_i - g\rho_{i+1}(y(\theta) - y_i)},$$
$$\frac{dy}{d\theta} = \frac{dy}{ds} \left(\frac{d\theta}{ds}\right)^{-1} = \frac{t \sin\theta}{p_i - g\rho_{i+1}(y(\theta) - y_i)},$$

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 21/32

More liquids - reformulation

Geotextile tube instalation

 $x(\theta) = x_i + \int_{\theta_i}^{\sigma} \frac{t\cos\delta\,d\delta}{(p_i^2 + 2tg\rho_{i+1}(\cos\delta - \cos\theta_i))^{\frac{1}{2}}},$ $y(\theta) = y_i + \int_{\theta_i}^{\theta} \frac{t \sin \delta \, d\delta}{(p_i^2 + 2tg\rho_{i+1}(\cos \delta - \cos \theta_i))^{\frac{1}{2}}},$ $s(\theta) = s_i + \int_{\theta_i}^{\theta_i} \frac{t \, d\delta}{(p_i^2 + 2tg\rho_{i+1}(\cos\delta - \cos\theta_i))^{\frac{1}{2}}},$

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 22/32

Numerical solution - auxiliary functions

Geotextile tube instalation

$$\widetilde{x}(t,p,\theta',\theta'',\rho) = \int_{\theta'}^{\theta''} \frac{t\cos\delta\,d\delta}{(p^2 + 2tg\rho(\cos\delta - \cos\theta'))^{\frac{1}{2}}},$$
$$\widetilde{y}(t,p,\theta',\theta'',\rho) = \int_{\theta'}^{\theta''} \frac{t\sin\delta\,d\delta}{(p^2 + 2tg\rho(\cos\delta - \cos\theta'))^{\frac{1}{2}}},$$
$$\widetilde{l}(t,p,\theta',\theta'',\rho) = \int_{\theta'}^{\theta''} \frac{t\,d\delta}{(p^2 + 2tg\rho(\cos\delta - \cos\theta'))^{\frac{1}{2}}},$$

Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 23/32

Numerical solution - equations

$$J(z) = 0\,,$$

$$J_{i}(z) = x_{i} - x_{i-1} - \widetilde{x} (t, p_{i-1}, \theta_{i}, \theta_{i-1}, \rho_{i}) ,$$

$$J_{n+i}(z) = y_{i} - y_{i-1} - \widetilde{y} (t, p_{i-1}, \theta_{i}, \theta_{i-1}, \rho_{i}) ,$$

$$J_{2n+i}(z) = v_{i}/2 - (y_{i} - y_{i-1})x_{i-1} - \widetilde{v} (t, p_{i-1}, \theta_{i}, \theta_{i-1}, \rho_{i}) ,$$

$$J_{3n+i}(z) = p_{i-1} - p_{i} - g \rho_{i} (y_{i} - y_{i-1}) , \quad i = 1, \dots, n .$$

$$J_{4n+1} = \theta_0 ,$$

$$J_{4n+2} = \pi - \theta_n ,$$

$$J_{4n+3} = x_n ,$$

$$J_{4n+4} = y_0 ,$$

$$J_{4n+5} = l/2 - \sum_{i=1}^n \tilde{l}(t, p_{i-1}, \theta_i, \theta_{i-1}, \rho_i) - x_0 .$$

PANM 15

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes

7-11 June 2010 - p. 24/32

Conclusion

Numerical solution - Newton's method

$$z^{n+1} = z^n - \left(\frac{\partial J(z^n)}{\partial z}\right) J(z^n)$$

$$z^{0} = (t^{0}, p_{0}^{0}, \dots, p_{n}^{0}, \theta_{0}^{0}, \dots, \theta_{n}^{0}, x_{0}^{0}, \dots, x_{n}^{0}, y_{0}^{0}, \dots, y_{n}^{0}),$$

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 25/32

Two liquids - contact zone

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 26/32

Two liquids - contact zone

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 26/32

Two liquids - height

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 27/32

Two liquids - height

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 27/32

Two liquids - botttom pressure

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 28/32

Two liquids - botttom pressure

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 28/32

Two liquids - top pressure

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 29/32

Two liquids - top pressure

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 29/32

Two liquids - tension in fabrics

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 30/32

Two liquids - tension in fabrics

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 30/32

Two liquids - tension in fabrics

Geotextile tube instalation Hypotheses Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 30/32

More liquids - shapes

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

PANM 15

7-11 June 2010 - p. 31/32

More liquids - shapes

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 31/32

More liquids - shapes

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

7-11 June 2010 - p. 31/32

The dependence between the parameters p, H, L, h, V is nonlinear.

7-11 June 2010 - p. 32/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

The dependence between the parameters p, H, L, h, V is nonlinear.

The contact zones are longer.

PANM 15

7-11 June 2010 - p. 32/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

The dependence between the parameters p, H, L, h, V is nonlinear.

The contact zones are longer.

The height increases.

PANM 15

7-11 June 2010 - p. 32/32

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion

The dependence between the parameters p, H, L, h, V is nonlinear.

The contact zones are longer.

The height increases.

The pressures on the bottom and top are reduced.

PANM 15

7-11 June 2010 - p. 32/32

The dependence between the parameters p, H, L, h, V is nonlinear.

The contact zones are longer.

The height increases.

The pressures on the bottom and top are reduced.

The tension force in the fabric is reduced.

Geotextile tube instalation **Hypotheses** Nomenclature Cross section **Basic equations** Problem 1 Problem 2 Problem 3 Problem 4 New parameter Theorem 1 Theorem 2 Theorem 3 Theorem 4 Case study - constant perimeter 10 m Case study - constant tension More liquids - cross section More liquids - formulation and conditions More liquids - basic equations More liquids - reformulation More liquids - reformulation Numerical solution - auxiliary functions Numerical solution - equations Numerical solution - equations Two liquids - contact zone Two liquids - height Two liquids - botttom pressure Two liquids - top pressure Two liquids - tension in fafrics More liquids - shapes Conclusion _____

7-11 June 2010 - p. 32/32