VERIFICATION AND VALIDATION: SOME EXPERIENCE FROM COMPUTATIONAL PRACTICE

Petr Přikryl

Institute of Mathematics ASCR, Prague

Programs and Algorithms of Numerical Mathematics Maxov 2010

Outline

- Philosophy of Model Validation
 - Determinism
 - Verification
 - Validation
- Pree and Moving Boundary Problems
 - Standard Boundary Value Problems
 - Unknown-Boundary Value Problems
 - Computational Solution of Moving Boundary Problems
- 3 Example 1: Verification
 - Benchmark Results
 - Verification Led to a Better Iterative Method
- 4 Example 2: Validation
 - Pulsed-Laser Irradiation of a One-Component Material
 - Validation Led to New Physical Knowledge

Philosophy of Model Validation Free and Moving Boundary Problems

> Example 1: Verification Example 2: Validation Summary

Determinism Verification Validation

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems

Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Philosophy of Model Validation

Free and Moving Boundary Problems Example 1: Verification Example 2: Validation Summary Determinism Verification Validation

Determinism

"Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of the beings who composed it — an intelligence sufficiently vast to submit these data to analysis — it would embrace in the same formula the movements of the greatest bodies of the universe and of the lightest atom; for it, nothing would be uncertain and the future, as the past, would be present to its eyes."

Laplace, 1776

Philosophy of Model Validation

Free and Moving Boundary Problems Example 1: Verification Example 2: Validation Summary Determinism Verification Validation

Determinism

Such an intelligence has yet to be found!

 \Rightarrow Create theories with simplifying assumptions to *approximately* predict the past, present, and future.

Determinism Verification Validation

What is a model

A representation of a phenomenon using existing physical laws and existing paradigms.

However, physical laws are derived using simplifying assumptions. (Example: Newton's laws.) Philosophy of Model Validation

Free and Moving Boundary Problems Example 1: Verification Example 2: Validation Summary Determinism Verification Validation

Simulations

Simulations are used to predict the model behavior to given sets of inputs/parameters.

Even if simulation results match the measurements, simulations are not exact predictors of reality.

Determinism Verification Validation

Simulations

There are always *inaccuracies* between the simulation results and the reality because of:

Summarv

- the limits and assumptions of the theory made to derive it
- the numerical method limits
- the simplification of the problem (for example, geometry or boundary conditions simplifications)
- variability and uncertainty of model parameters

Philosophy of Model Validation

Free and Moving Boundary Problems Example 1: Verification Example 2: Validation Summary Determinism Verification Validation

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems

3 Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Determinism Verification Validation

What is meant by verification

Numerical *verification* — be certain the numerical method works correctly.

"Solving the equations right"

(*Roache*, Verification and Validation in Computational Science and Engineering, Hermosa Publishers 1998.)

Determinism Verification Validation

Verification practice

Practice: verification is done independently of the model. It is a way of making sure the numerical method works on benchmark cases.

- Just testing, not verification?
- What about the code (program) of the model?

Philosophy of Model Validation

Free and Moving Boundary Problems Example 1: Verification Example 2: Validation Summary Determinism Verification Validation

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation
- Pree and Moving Boundary Problems
 - Standard Boundary Value Problems
 - Unknown-Boundary Value Problems
 - Computational Solution of Moving Boundary Problems

3 Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Determinism Verification Validation

• Roache's (1998) definition:

"Solving the right equations"

- Our definition: "A method to attain a pre-defined level of accuracy for a model and its simulation results."
- \Rightarrow Reach a certain confidence in the model's correctness.

Philosophy of Model Validation Free and Moving Boundary Problems Example 1: Verification

Example 2: Validation

Summary

Determinism Verification Validation

Validation objectives

- assess model performance objectively
- account for numerical method limits, model parameters variability and uncertainty
- evaluate the results of a simulation without human bias and interpretation

Determinism Verification Validation

The goal of validation

Validation is not ...

- *Model tuning*: model tuning does not imply having a model validated. However, an updated model can be validated.
- A substitute for user's training. It is meant to help him get a better model and make better decisions.

The Goal

• Use numerical model with confidence to predict response with few or **no** experiments.

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation
- Pree and Moving Boundary Problems
 - Standard Boundary Value Problems
 - Unknown-Boundary Value Problems
 - Computational Solution of Moving Boundary Problems

3 Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Standard boundary value problems

• we look for the solution u of a given system of differential equations on a domain $D \subset \mathbb{R}^n$

$$Au = f$$
 in D

• u should satisfy some set of conditions on the boundary ∂D of D

$$Bu = g$$
 on ∂D

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Examples of standard boundary value problems

Examples:

• Dirichlet problem for the Poisson equation

$$-\Delta u = f$$
 in Ω

$$u = g$$
 on $\partial \Omega$

• initial-boundary value problem for the heat transfer equation on $\Omega \times [0, \, T]$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems

3 Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Unknown-boundary value problems

- domain D is not known or completely specified
- examples: falling raindrop, Czochralski method of crystal growth, flow through porous media, diffusion of oxygen in a body tissue
- additional information required relating the solution *u* of the differential system to its domain of definition *D*

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Unknown-boundary value problems

 additional boundary (or interface) conditions along the unknown part Γ of ∂D (or along the unknown interface Γ ⊂ D):

$$Cu = h$$
 on Γ

- solution of an unknown-boundary value problem is the pair $\{u, \Gamma\}$
- inherent nonlinearity of geometrical nature
- free boundary problems: stationary
- moving boundary problems, MBPs: evolution

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Examples of unknown-boundary value problems

The Classical Two-Phase Stefan Problem

A model of a slab of "ice" melting from the left: Find the temperature T(x, t), $0 \le x \le I$, t > 0, and interface location Z(t), t > 0, such that the following are satisfied:

• partial differential equations

$$\frac{\partial T}{\partial t} = \alpha_L \frac{\partial^2 T}{\partial x^2} \quad \text{for} \quad 0 < x < Z(t), \ t > 0 \ (\text{liquid region})$$
$$\frac{\partial T}{\partial t} = \alpha_S \frac{\partial^2 T}{\partial x^2} \quad \text{for} \quad Z(t) < x < l, \ t > 0 \ (\text{solid region})$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Examples of unknown-boundary value problems

interface conditions

$$T(Z(t),t)=T_{\mathsf{m}},\quad t>0$$

$$ho\lambda Z'(t) = -k_L rac{\partial T}{\partial x}(Z(t)^-,t) + k_S rac{\partial T}{\partial x}(Z(t)^+,t), \quad t>0$$

initial conditions

$$egin{aligned} Z(0) &= 0 \ T(x,0) &= \mathcal{T}_{ ext{init}} < \mathcal{T}_{ ext{m}}, \quad 0 \leq x \leq I \ \end{aligned}$$
 (the initial state is solid)

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

< 同 ▶

- ₹ 🖬 🕨

Examples of unknown-boundary value problems

boundary conditions

$$T(0, t) = T_L > T_m, \quad t > 0$$
 (imposed temperature)
 $-k_S \frac{\partial T}{\partial x}(l, t) = 0, \quad t > 0$ (insulated boundary)

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Examples of unknown-boundary value problems

Analytical Solution to One-Phase Stefan Problem

$$\begin{split} \frac{\partial T}{\partial t} &= \alpha_L \frac{\partial^2 T}{\partial x^2}, \ 0 < x < Z(t), \ t > 0 \ (\textit{liquid}) \\ T(Z(t), t) &= T_{\rm m}, \quad t \ge 0 \\ \rho \lambda Z'(t) &= -k_L \frac{\partial T}{\partial x}(Z(t), t), \quad t > 0 \\ Z(0) &= 0 \quad (\text{material initially completely solid}) \\ T(0, t) &= T_L > T_{\rm m}, \quad t > 0 \end{split}$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

< 同 ▶

Examples of unknown-boundary value problems

$$\operatorname{erf}(z) = rac{2}{\sqrt{\pi}} \int\limits_{0}^{z} e^{-s^2} \mathrm{d}s, \quad St_{\lambda} = rac{c_L(T_L - T_{\mathsf{m}})}{\lambda} \quad (Stefan \; Number)$$

$$T(x,t) = T_L - (T_L - T_m) \frac{\operatorname{erf}(\frac{x}{2\sqrt{\alpha_L t}})}{\operatorname{erf}(\omega)}, \quad Z(t) = 2\omega\sqrt{\alpha_L t}$$
$$\omega e^{\omega^2} \operatorname{erf}(\omega) = \frac{St_\lambda}{\sqrt{\pi}}$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

I ≡ →

Mathematical Model of Laser Irradiation

- a sample of monocrystalline semiconductor (one-component material) irradiated by a laser pulse with energy density *E*
- one-dimensional treatment (due to the dimensions and symmetry of the sample)
- melting, evaporating, and resolidification of sample surface
- D thickness of the sample
- $Z_0(t)$ liquid/vapor interface, Z(t) solid/liquid interface
- evaporation into vacuum only liquid and solid treated explicitly, vapor removed from the surface immediately
- T(x, t) temperature

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

< 同 ▶

ъ

Mathematical Model of Laser Irradiation - equations

$$\rho c_{L} \frac{\partial T_{L}}{\partial t} = \frac{\partial}{\partial x} \left(k_{L} \frac{\partial T_{L}}{\partial x} \right) + (1 - R(t)) \alpha_{L}(x) I_{0}(t) \times \\ \times \exp \left(-\int_{Z_{0}(t)}^{x} \alpha_{L}(\eta) d\eta \right), \quad x \in [Z_{0}(t), Z(t)], \ t > 0 \\ \rho c_{S} \frac{\partial T_{S}}{\partial t} = \frac{\partial}{\partial x} \left(k_{S} \frac{\partial T_{S}}{\partial x} \right) + (1 - R(t)) \alpha_{S}(x) I_{0}(t) \times \\ \times \exp \left(-\int_{Z_{0}(t)}^{Z(t)} \alpha_{L}(\eta) d\eta - \int_{Z(t)}^{x} \alpha_{S}(\eta) d\eta \right), \quad x \in [Z(t), D], \ t > 0$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

< 同 ▶

- A 🗄 🕨

Mathematical Model of Laser Irradiation - fixed boundaries

Initial and boundary conditions

$$egin{aligned} T(x,0) &= T_0 = ext{const.}, \; x \in [0,D], \ &Z_0(0) &= Z(0) = 0, \ &T(D,t) &= T_0, \; t > 0 \end{aligned}$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Mathematical Model of Laser Irradiation - interfaces

Solid/liquid interface

$$\rho \lambda_{\rm m} \frac{\mathrm{d}Z}{\mathrm{d}t} = k_{\rm S} \left(\frac{\partial T_{\rm S}}{\partial x} \right)_{x=Z(t)+} - k_L \left(\frac{\partial T_L}{\partial x} \right)_{x=Z(t)-},$$
$$\frac{\mathrm{d}Z}{\mathrm{d}t} = -C_1 \exp\left(\frac{-Q}{k_{\rm B} T_Z} \right) \left\{ 1 - \exp\left[-\frac{\lambda_{\rm p}}{k_{\rm B}} \left(\frac{1}{T_Z} - \frac{1}{T_{\rm m}} \right) \right] \right\}$$

Liquid/vapor interface

$$\rho \lambda_{\mathsf{v}} \frac{\mathsf{d} Z_0}{\mathsf{d} t} = k_L \left(\frac{\partial T_L}{\partial x} \right)_{x = Z_0(t) +} - \epsilon \sigma (T_{Z_0}^4 - T_{\mathsf{ext}}^4),$$

$$\frac{dZ_0}{dt} = \frac{C_2}{\rho} \sqrt{\frac{M}{2\pi R_g}} T_{Z_0}^C \cdot 10^{-(A/T_{Z_0})+B}$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Mathematical Model of Laser Irradiation - schematic

Set of equations for the temperature field T(x, t), the phase interface position Z(t), and the temperature $T_Z(t)$ at the interface:

$$\rho c_L \frac{\partial T_L}{\partial t} = \frac{\partial}{\partial x} \left(k_L \frac{\partial T_L}{\partial x} \right) + E_L(x, t), \quad x \in [0, Z(t)], \ t > 0,$$
$$\rho c_S \frac{\partial T_S}{\partial t} = \frac{\partial}{\partial x} \left(k_S \frac{\partial T_S}{\partial x} \right) + E_S(x, t), \quad x \in [Z(t), D], \ t > 0$$

Initial and boundary conditions:

$$T(x,0) = T_0 = \text{const.}, \ x \in [0,D], \quad Z(0) = 0,$$
$$\frac{\partial T}{\partial x}(0,t) = 0, \quad T(D,t) = T_0, \quad t > 0$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Mathematical Model of Laser Irradiation - schematic

Conditions at the moving phase interface x = Z(t), t > 0:

$$\rho \lambda \frac{\mathrm{d}Z}{\mathrm{d}t} = k_S \left(\frac{\partial T_S}{\partial x} \right)_{x=Z(t)+} - k_L \left(\frac{\partial T_L}{\partial x} \right)_{x=Z(t)-},$$
$$\frac{\mathrm{d}Z}{\mathrm{d}t} = F(T_Z(t)).$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems

• Computational Solution of Moving Boundary Problems

3 Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Computational solution of MBPs

- Choose an *initial approximation* $\Gamma^{(0)}$ of the unknown boundary Γ and put k = 0.
- Denote by Ω^(k) the solution domain corresponding to Γ^(k). Compute the function u^(k) as the solution of the standard boundary value problem

$$Au^{(k)} = f$$
 in $\Omega^{(k)}$,
 $Bu^{(k)} = g$ on $\partial \Omega^{(k)}$.

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Computational solution of MBPs

Use the computed u^(k) to find a new position Γ of the unknown boundary in such a way that the interface condition(s) are satisfied on this Γ:

$$Cu^{(k)} = h$$
 on $\tilde{\Gamma}$.

Then put k = k + 1, $\Gamma^{(k)} = \tilde{\Gamma}$.

- Compare Γ^(k) with Γ^(k-1) and if they differ more than a user supplied tolerance allows go back to Step 2. Otherwise, end the iteration and take u^(k), Γ^(k) for the final approximate solution.
 - successive approximation method (trial and error)

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Computational solution of MBPs

- real computations: discrete analogs of A-C are used
- moving boundary problems:
 - algorithm applied to the entire space-time domain
 - algorithm used to solve the free boundary problems obtained for each time level after time discretization
- the latter possibility seems to be preferable

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Computational solution of MBPs

Three types of numerical methods

- *front-tracking methods*: special discretization formulas needed in the vicinity of the moving boundary
- *fixed-domain methods*: weak solutions, typical for more than one space dimension
- *front-fixing methods*: transformations of the independent variables

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Computational solution of MBPs

Front-Fixing Methods

- this is our approach
- idea: to fix the moving boundary for the entire course of numerical solution
- the original MBP is transformed using a suitable transformation of space coordinates
- for the simple 1-D one-phase Stefan problem we may use

$$\xi=\frac{x}{Z(t)},$$

which fixes the moving boundary x = Z(t) at $\xi = 1$ for all t > 0

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Computational solution of MBPs

Front-Fixing Methods

- advantage: standard discretizations techniques can be used
- disadvantage: the partial differential equations achieve a complicated form; for the one-phase Stefan problem we arrive at

$$Z^{2}\frac{\partial T}{\partial t} = \frac{\partial^{2}T}{\partial\xi^{2}} + Z\xi\frac{\mathrm{d}Z}{\mathrm{d}t}\frac{\partial T}{\partial\xi}$$

• trial and error method used after front fixing (successive approximations)

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Numerical algorithm

Resources

- approach proposed by R.M. Furzeland (A Comparative Study of Numerical Methods for Moving Boundary Problems.
 J. Inst. Maths Appl. 26:411–429, 1980)
- included into the well-known monograph by J. Crank (*Free and Moving Boundary Problems*. Oxford University Press, USA, 1987)
- feasibility documented by a series of numerical tests

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Mathematical Model of Laser Irradiation - schematic

Set of equations for the temperature field T(x, t), the phase interface position Z(t), and the temperature $T_Z(t)$ at the interface:

$$\rho c_L \frac{\partial T_L}{\partial t} = \frac{\partial}{\partial x} \left(k_L \frac{\partial T_L}{\partial x} \right) + E_L(x, t), \quad x \in [0, Z(t)], \ t > 0,$$
$$\rho c_S \frac{\partial T_S}{\partial t} = \frac{\partial}{\partial x} \left(k_S \frac{\partial T_S}{\partial x} \right) + E_S(x, t), \quad x \in [Z(t), D], \ t > 0$$

Initial and boundary conditions:

$$T(x,0) = T_0 = \text{const.}, \ x \in [0,D], \quad Z(0) = 0,$$
$$\frac{\partial T}{\partial x}(0,t) = 0, \quad T(D,t) = T_0, \quad t > 0$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Mathematical Model of Laser Irradiation - schematic

Conditions at the moving phase interface x = Z(t), t > 0:

$$\rho \lambda \frac{\mathrm{d}Z}{\mathrm{d}t} = k_{S} \left(\frac{\partial T_{S}}{\partial x} \right)_{x=Z(t)+} - k_{L} \left(\frac{\partial T_{L}}{\partial x} \right)_{x=Z(t)-},$$
$$\frac{\mathrm{d}Z}{\mathrm{d}t} = F(T_{Z}(t)).$$

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Numerical algorithm

Short description

- Landau transformation of both the phase intervals
- standard space and time discretization
- boundary conditions at the fixed ends 0, *D*: standard procedure
- moving interface: one of the conditions processed in a standard way and included into the system of mesh equations
- moving interface: the other condition exploited in an iterative procedure to find the approximate value of Z(t)

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Numerical algorithm

Result of the discretization

- some time level $t = t_n$
- notation: **u** vector of approximate values of $T(x, t_n)$
- notation: s approximation to the interface position $Z(t_n)$
- discrete boundary value problem to be solved:

$$\mathbf{A}(s)\mathbf{u} = \mathbf{b}(s),$$
$$s = f(\mathbf{u}, s)$$

• this system of nonlinear algebraic equations solved at each time step by iteration

Standard Boundary Value Problems Unknown-Boundary Value Problems Computational Solution of Moving Boundary Problems

Numerical algorithm

Iterative procedure

- choose s₀ and proceed for k = 0, 1, ... as follows (until convergence):
- obtain \mathbf{u}_k by solving the linear system

$$\mathbf{A}(s_k)\mathbf{u}_k=\mathbf{b}(s_k)$$

• then compute s_{k+1} from

$$s_{k+1} = f(\mathbf{u}_k, s_k)$$

• successive approximation method: convergence?

Benchmark Results Verification Led to a Better Iterative Method

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems
- 3 Example 1: Verification
 - Benchmark Results
 - Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Benchmark Results Verification Led to a Better Iterative Method

Verification of the Numerical Algorithm

- test example: classical two-phase Stefan problem (Neumann analytical solution)
- convergence of the successive approximation method: discretized Stefan condition

$$s = f(s)$$

iterations s_{k+1} = f(s_k) give s_{k+2} ≈ s_k: oscillations, no convergence

Benchmark Results Verification Led to a Better Iterative Method

Some theory of iterative methods

- x = f(x), fixed point x^* ; $\phi(x) \equiv x f(x)$, zero x^*
- assumptions: x^* exists, f smooth enough
- successive approximation method (SAM)

Theorem. If $|f'(x^*)| < 1$ then SAM is locally convergent. The rate of convergence is linear in general but if $f'(x^*) = 0$ it is quadratic at least.

• what to do with SAM in case that $|f'(x^*)| \ge 1$ and the method does not converge?

Benchmark Results Verification Led to a Better Iterative Method

| 4 同 1 4 三 1 4 三 1

Observations

• Observation 1: the same behavior when solving $s^2 = A$, A > 0, by successive approximations in the form (f(s) = A/s)

$$s_{k+1} = \frac{A}{s_k};$$

remedy – Newton-Raphson method to solve $\psi(s) = 0$, $\psi(s) = s^2 - A$

 \bullet problem in our case: how to compute the values of $\psi' \to {\rm Newton's}$ method inapplicable here

Benchmark Results Verification Led to a Better Iterative Method

- 4 同 2 4 回 2 4 回 2 4

Observations

• Observation 2: Newton's method for solving $s^2 - A = 0$ has the form

$$s_{k+1}=rac{1}{2}\left(s_k+rac{A}{s_k}
ight),$$

hence

$$s_{k+1} = \frac{1}{2}s_k + \frac{1}{2}f(s_k), \quad f(s) = \frac{A}{s}$$

- relaxation: rewrite the equation s = f(s) to an equivalent equation $s = \alpha f(s) + (1 \alpha)s \equiv g_{\alpha}(s)$, $\alpha \in (0, 1]$
- optimum α found from the knowledge of the (approximate) value of $f'(s^*)$ and from the condition $g'_{\alpha}(s^*) = 0$:

$$\alpha = \frac{1}{1 - f'(s^*)}$$

Benchmark Results Verification Led to a Better Iterative Method

Observations

- if $f'(s^*) pprox -1$ we obtain $lpha pprox rac{1}{2}$
- Observation 3: for f(s) = A/s we have s* = √A and f'(s*) = −1 → equivalence of the Newton-Raphson method and successive approximation method with underrelaxation in case of α = 1/2

Benchmark Results Verification Led to a Better Iterative Method

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems

Example 1: Verification

Benchmark Results

• Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Benchmark Results Verification Led to a Better Iterative Method

Remedy in our case

- put $F_{\alpha}(s) = \alpha f(s) + (1 \alpha)s \equiv g_{\alpha}(s)$, $\alpha \in (0, 1]$
- the fixed points of f and F_{α} are identical
- try to choose α so that $F'_{\alpha}(s^*) = 0$ at a fixed point s^*
- optimum

$$\alpha = \frac{1}{1-D}$$
, where $D = f'(s^*)$

• approximate D

Benchmark Results Verification Led to a Better Iterative Method

・ 同 ト ・ ヨ ト ・ ヨ ト

A better iterative method

- assume we have a good initial approximation s_n of s^*
- compute $s_{n+1} = f(s_n)$, $s_{n+2} = f(s_{n+1})$

o put

 $D \approx D_n,$ $D_n = \frac{f(s_{n+1}) - f(s_n)}{s_{n+1} - s_n} = \frac{s_{n+2} - s_{n+1}}{s_{n+1} - s_n}$

use

$$\alpha_n = \frac{1}{1 - D_n}$$

result:

$$\tilde{s}_{n+1} = rac{s_n s_{n+2} - s_{n+1}^2}{s_{n+2} - 2s_{n+1} + s_n}$$

Benchmark Results Verification Led to a Better Iterative Method

A better iterative method

• instead of solving s = f(s) we solve $s = \tilde{F}(s)$ by the usual SAM, where

$$\tilde{F}(s) = rac{sf(f(s)) - (f(s))^2}{f(f(s)) - 2f(s) + s}$$

Theorem. Let s^* be a fixed point of f such that $f'(s^*) \neq 0$, $f'(s^*) \neq 1$. Then the SAM for \tilde{F} converges to s^* at least quadratically provided $|s^* - s_0|$ is sufficiently small.

- the final method "well-known" in fact:
 - Steffensen, J.F., Remarks on iteration, Skand. Aktuar. Tidskr. 16 (1933), 64–72
 - Willers, F.A., ZAMM 22 (1948), 125–126: "the method works always"

Benchmark Results Verification Led to a Better Iterative Method

Verification – lesson learned

- the above approach (without relaxation) presented in Crank, J.: Free and Moving Boundary Problems, Oxford, Clarendon Press 1984
- suggested and tested (?) by Furzeland, R.M., A Comparative Study of Numerical Methods for Moving Boundary Problems, J. Inst. Maths Applics 26 (1980), 411–429
- test results published: "the scheme iterated until convergence (usually 2–3 iterations)"
- do not trust even the reputable sources do your own verification not only of your program but also of the method used

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems

3 Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

• Pulsed-Laser Irradiation of a One-Component Material

Validation Led to New Physical Knowledge

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Experimental situation

- GaSb samples (treated as one-component material) irradiated in vacuum ($<10^{-10}$ Torr) by
 - ArF laser: $\lambda = 193 \, \mathrm{nm}, 10 \, \mathrm{ns}$ at FWMH
 - ruby laser: $\lambda = 694 \text{ nm}, 80 \text{ ns}$ at FWMH
- energy density varied in the range
 - ArF laser: 10–400 mJ/cm²
 - ruby laser: $50-1200 \text{ mJ/cm}^2$
- changes in the optical parameters of the surface during pulse incidence monitored in situ by TRR using
 - for ArF laser HeNe cw laser ($\lambda = 633$ nm)
 - for ruby laser Nd:glass laser ($\lambda = 1.06\,\mu{\rm m}, 0.5\,{\rm ms})$
- P. Přikryl, E. Gatskevich, G. Ivlev et al., Comput. Materials Sci. 17 (2000) 384

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Computational simulations

- comparison of surface melt durations determined experimentally by TRR measurements and calculated by our model
 - a reasonable agreement for the ruby laser
 - no agreement for ArF laser

(see figures)

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Comparison with the experimental results

Surface melt durations for ruby laser: computational model and experiment

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Comparison with the experimental results

Surface melt durations for ArF laser: computational model and experiment

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Possible explanation

- two hypothetical possibilities for explanation
 - decomposition of GaSb close to the melting point leading to significant changes in the melting temperature
 - substantial error in material parameters employed in the model (liquid reflectivity, thermal conductivity)
- test of the influence of all the parameters see figures

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Comparison with the experimental results

Influence of the melting temperature on the surface melt duration (ArF laser)

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Comparison with the experimental results

Influence of the reflectivity of liquid on the surface melt duration (ArF laser)

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Comparison with the experimental results

Influence of the thermal conductivity of solid on the surface melt duration (ArF laser)

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Outline

1 Philosophy of Model Validation

- Determinism
- Verification
- Validation

Pree and Moving Boundary Problems

- Standard Boundary Value Problems
- Unknown-Boundary Value Problems
- Computational Solution of Moving Boundary Problems

Example 1: Verification

- Benchmark Results
- Verification Led to a Better Iterative Method

4 Example 2: Validation

- Pulsed-Laser Irradiation of a One-Component Material
- Validation Led to New Physical Knowledge

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Possible explanation – conclusion

change in thermal conductivity corresponding to amorphization of the surface layer

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Amorphization – experimental validation I

- low energy electron diffraction measurements (LEED)
 - LEED pattern corresponded to a (1x1) structure below and at the melting threshold
 - further increase in the energy densities led to increase in the background and disappearance of diffraction spots
- *interpretation of the results:* amorphization of the irradiated layer indicated

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Amorphization – experimental validation II

- Auger electron spectroscopy (AES)
 - smoothing of the structure in Ga and Sb peaks as compared to the state before irradiation
 - indicates increasing structural and chemical disorder
- *interpretation of the results:* correspond to supposed amorphization of the irradiated layer

Pulsed-Laser Irradiation of a One-Component Material Validation Led to New Physical Knowledge

Validation – lesson learned

- amorphization of GaSb samples after ArF laser irradiation confirmed by computational and experimental results
- do not think about the model only
- model validation brought new information about the material used and the treatment applied

Conclusions

- verification does not mean to verify the implementation of a trustworthy numerical method only
- the resources used should be subject to one's independent analysis
- validation can contribute not only to the quality of the computer model itself
- it can improve the knowledge of the system modeled as well