PANM 15, Dolní Maxov, 6.-11. června 2010

SPAM:

Subspace Projected Approximate Matrices

in Numerical Linear Algebra

Jan Brandts and Ricardo da Silva
Korteweg-de Vries Institute for Mathematics
University of Amsterdam, Netherlands

PANM 15, Dolní Maxov, 6.-11. června 2010

SPAM:

Subspace Projected Approximate Matrices

in Numerical Linear Algebra
\bigcirc Definition:
Subspace Projected Approximate Matrix

- Review: Subspace Methods for Linear Algebra Problems
\& Investigation: Incorporating SPAM in Subspace Methods

PANM 15, Dolní Maxov, 6.-11. června 2010

A is a Hermitian $n \times n$ matrix and A_{0} an "approximation" of A,

$$
\{0\}=\mathcal{U}_{0} \subset \mathcal{U}_{1} \subset \cdots \subset \mathcal{U}_{n-1} \subset \mathcal{U}_{n}=\mathcal{C}^{n} \quad \text { and } \operatorname{dim}\left(\mathcal{U}_{k}\right)=k
$$

Π_{k} is the orthogonal projection on \mathcal{U}_{k}^{\perp}. Then the matrix

$$
A_{k}=A+\Pi_{k}\left(A_{0}-A\right) \Pi_{k}
$$

is the k-th SPAM matrix of the pair A, A_{0}

PANM 15, Dolní Maxov, 6.-11. června 2010
Π_{k} is the orthogonal projection on \mathcal{U}_{k}^{\perp}. The k-th SPAM matrix of the pair A, A_{0} is the matrix

$$
A_{k}=A+\Pi_{k}\left(A_{0}-A\right) \Pi_{k}
$$

Properties:
consistent definition for $k=0$; moreover, $A_{n}=A$
$A_{k}^{*}=A_{k}$, and for all $u \in \mathcal{U}_{k}$ we have $A_{k} u=A u$ and $u^{*} A_{k}=u^{*} A$

PANM 15, Dolní Maxov, 6.-11. června 2010

Example: let $\mathcal{U}_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ (first k standard basis vectors)
Then $A_{k}=A+\Pi_{k}\left(A_{0}-A\right) \Pi_{k}$ is the matrix

PANM 15, Dolní Maxov, 6.-11. června 2010

Example: let $\mathcal{U}_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ (first k standard basis vectors)
Then $A_{k}=A+\Pi_{k}\left(A_{0}-A\right) \Pi_{k}$ is the matrix

PANM 15, Dolní Maxov, 6.-11. června 2010

Example: let $\mathcal{U}_{k}=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ (first k standard basis vectors)
Then $A_{k}=A+\Pi_{k}\left(A_{0}-A\right) \Pi_{k}$ is the matrix

PANM 15, Dolní Maxov, 6.-11. června 2010

Notice: let the first k columns of U with $U^{*} U=I \operatorname{span} \mathcal{U}_{k}$. Then $U^{*} A_{k} U$ is a similar combination of $U^{*} A U$ and $U^{*} A_{0} U$.

PANM 15, Dolní Maxov, 6.-11. června 2010

Notice: With respect to bases $\left\{u_{1}, \ldots, u_{k}\right\}$ for \mathcal{U}_{k}, the matrix A_{k} is a rank-2 update of A_{k-1} of arrowhead type

PANM 15, Dolní Maxov, 6.-11. června 2010

Notice: With respect to bases $\left\{u_{1}, \ldots, u_{k}\right\}$ for \mathcal{U}_{k}, the matrix A_{k} is a rank-2 update of A_{k-1} of arrowhead type

PANM 15, Dolní Maxov, 6.-11. června 2010

Let u be such that $\mathcal{U}_{k}=\mathcal{U}_{k-1} \oplus\langle u\rangle$, with $u \perp \mathcal{U}_{k-1}$ and $\|u\|=1$
Then A_{k} is an indefinite Hermitian rank-2 update of A_{k-1},

$$
A_{k}=A_{k-1}+u v^{*}+v u^{*}=A_{k-1}+(u \mid v)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)(u \mid v)^{*}
$$

where

$$
v=\left(\Pi_{k-1}-\frac{1}{2} u u^{*}\right)\left(A-A_{0}\right) u
$$

The computational costs for updating involve one MV with A

PANM 15, Dolní Maxov, 6.-11. června 2010

Proposition: $U^{*} A_{k} U=M=U^{*} A U$ (" shared Ritz values")
Theorem: If $A-A_{0} \geq 0$ then

$$
\mu_{j} \leq \theta_{j} \leq \lambda_{j}
$$

- μ_{j} eigenvalue of M (Ritz value);
- θ_{j} eigenvalue of A_{k};
- λ_{j} eigenvalue of A.

Proved by the Cauchy Interlace Theorem and Weyl's Theorem

PANM 15, Dolní Maxov, 6.-11. června 2010
Recall: Hermitian eigenvalue problem $A x=\lambda x$.
Subspace \mathcal{U}_{k} with orthonormal basis U
Rayleigh-Ritz procedure:
Eigenpairs of $M=U^{*} A U$ define so-called Ritz pairs: improvingly good approximations to eigenpairs of A

If \mathcal{U}_{k} is a Krylov subspace, we get the Lanczos method.

PANM 15, Dolní Maxov, 6.-11. června 2010
Lanczos method
Expand \mathcal{U}_{k} with the current eigenvalue residual $r=A v_{j}-\mu_{j} v_{j}$
SPAM eigenvalue method (Shephard et al. 2001)
Expand \mathcal{U}_{k} with the best eigenvector approximation of A_{k}

- this probably leads to faster convergence in k
- but requires an inner iteration for A_{k}
- if A_{0} is "simple" this iteration is cheap

PANM 15, Dolní Maxov, 6.-11. června 2010

Approximation from below: constructing A_{0} with $A-A_{0} \geq 0$

- naturally available in numPDE context with diffusion term

Algebraically: Choose any $H \geq 0$ and set $A_{0}=A-H$
Requirements for H :

- $A_{0}=A-H$ should be sparser than A and/or of lower rank
- H should be poor approximation of A
- of course these requirements are mutually contradictory

PANM 15, Dolní Maxov, 6.-11. června 2010

Option: $H=E E^{*} A E E^{*}$ where E is a selection of columns of I

If $A \geq 0$ then also $H \geq 0$; depicted is $A_{0}=A-H$

PANM 15, Dolní Maxov, 6.-11. června 2010

Option: $H=E E^{*} A E E^{*}$ where E is a selection of columns of I

Which selection?

- randomly: Ritz-Galerkin projection is not very good
- based on smallest diagonal elements

We will illustrate the latter selection strategy on a reactiondiffusion problem discretized by the finite difference method.

Illustration: Lanczos for 1d-reaction diffusion FD

Illustration: SPAM with rank-2 approximation A_{0}

Illustration: SPAM with rank-4 approximation A_{0}

Illustration: SPAM with rank-5 approximation A_{0}

Illustration: SPAM with rank-6 approximation A_{0}

Illustration: SPAM with rank-7 approximation A_{0}

Illustration: SPAM with rank-8 approximation A_{0}

Illustration: SPAM with rank-9 approximation A_{0}

Illustration: SPAM with rank-10 approximation A_{0}

PANM 15, Dolní Maxov, 6.-11. června 2010

Question: SPAM seems to converge more quickly than Lanczos

Lanczos is, however, started with a random vector

SPAM "starts" with an eigenvector of A_{0}

It would be more fair to start Lanczos with the same vector

Illustration: Lanczos and SPAM with same startvector

Illustration: Lanczos and SPAM with same startvector

PANM 15, Dolní Maxov, 6.-11. června 2010

SPAM without outer iteration

In SPAM, the outer iteration ensures the interlace property and the monotonicity of the eigenvalue approximations

But, it is not strictly necessary

In the following experiments we compare the maximum eigenvalue of A_{k} with the maximum eigenvalue of SPAM

Illustration: SPAM without louter iteration

Illustration: SPAM without louter iteration

Illustration: SPAM without louter iteration

PANM 15, Dolní Maxov, 6.-11. června 2010

Other approximations A_{0} (not necessarily with $A-A_{0} \geq 0$)

In the original paper by Shephard et. al:

- A_{0} is chosen k-diagonal with lower bandwidth then A
- tensor product aproximations

Their only goal is to have a cheaper MV, they do not care much about the approximation properties or the rank of A_{k}

PANM 15, Dolní Maxov, 6.-11. června 2010

The inner iteration

In the inner iteration we need to find an eigenvector of A_{k}

- a good start vector is available (eigenvector of A_{k-1})
- in fact, a good initial search space \mathcal{U}_{k} is available

Shephard et al. propose to use SPAM recursively
This requires a range of approximations $A_{0}, \widehat{A_{0}}, \hat{\hat{A}_{0}}, \ldots$

PANM 15, Dolní Maxov, 6.-11. června 2010
Jacobi-Davidson
JD converges quadratically if the start vector is close enough to the eigenvector

Often, Lanczos is used to get close enough to this eigenvector.
SPAM seems a good alternative:

- the rank of A_{k} is low for small k
- moreover, A_{k} can be used in JD's inner iteration

PANM 15, Dolní Maxov, 6.-11. června 2010
Preconditioned classical methods for $A x=b$
Initial guess x_{0}, residual $r_{0}=b-A x_{0}$
repeat until $\left\|r_{j}\right\|$ small enough:

- solve $A_{0} u_{j+1}=r_{j}$ and set $c_{j+1}=A u_{j+1}$
- $x_{j+1}=x_{j}+u_{j+1}$ with residual $r_{j+1}=r_{j}-c_{j+1}$ end loop

Here A_{0} is a fixed preconditioner, for example, A 's diagonal

PANM 15, Dolní Maxov, 6.-11. června 2010

$$
\begin{aligned}
& \text { repeat until }\left\|r_{j}\right\| \text { small enough: } \\
& \text { - solve } A_{j} u_{j+1}=r_{j} \text { and set } c_{j+1}=A u_{j+1} \\
& \text { - } x_{j+1}=x_{j}+u_{j+1} \text { with residual } r_{j+1}=r_{j}-c_{j+1} \\
& \text { - } A_{j+1}=A_{j}+u v^{*}+v u^{*} \\
& \text { end loop }
\end{aligned}
$$

Logical choice is $u=u_{j+1}$, orthonormalized to all previous u_{j}, because the action of A on u_{j+1} has already been stored in c_{j+1}

PANM 15, Dolní Maxov, 6.-11. června 2010
repeat until $\left\|r_{j}\right\|$ small enough:

- solve $A_{j} u_{j+1}=r_{j}$ and set $c_{j+1}=A u_{j+1}$
- $x_{j+1}=x_{j}+u_{j+1}$ with residual $r_{j+1}=r_{j}-c_{j+1}$
- \widehat{u}_{j+1} is orthonormal to all previous \widehat{u}_{j}
- $\widehat{c}_{j+1}=A \widehat{u}_{j+1}$ (without performing the MV!)
- $A_{j+1}=A_{j}+\widehat{u}_{j+1} v^{*}+v \widehat{u}_{j+1}^{*}$
end loop

PANM 15, Dolní Maxov, 6.-11. června 2010

Solving $A_{j} u_{j+1}=r_{j}$ is cheap using the Woodbury formula:

- A_{j} is a rank $2 j$ update of A_{0};
- A_{j} is a rank-2 update of A_{j-1}

These updates are of the form $u v^{*}+v u^{*}$ and thus involve the solution of $A_{0} w=u$ and $A_{0} z=v$ only.

This would lead to a two-term recursion for the approximations.

PANM 15, Dolní Maxov, 6.-11. června 2010

Conclusions:

The SPAM matrices contain eigenvalue approximations better than the Rayleigh-Ritz approximations.

It is unclear if the additional computational effort to compute them is worthwhile; in some cases it is, in other cases it is not.

In the linear system context the SPAM matrix is a preconditioner that for some generic choices leads to standard Krylov methods ("updating the preconditioner")

