A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems

Václav Kučera

Faculty of Mathematics and Physics Charles University Prague

Finite volume method with reconstruction

- Continuous Problem
- Space semidiscretization

2 Discontinuous Galerkin method with reconstruction

- Formulation
- Theoretical results and numerical experiments

Finite volume method with reconstruction Continuous Problem

• Space semidiscretization

2 Discontinuous Galerkin method with reconstruction

- Formulation
- Theoretical results and numerical experiments

A (10) A (10)

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with a Lipschitz boundary $\partial \Omega$.

Continuous Problem

Find $u: Q_T = \Omega \times (0, T) \rightarrow \mathbb{R}$ such that

$$\begin{aligned} &\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(\mathbf{u}) = 0 \quad \text{in } \mathbf{Q}_{\mathrm{T}}, \\ &u(x,0) = u^0(x), \quad x \in \Omega, \end{aligned}$$

where $\mathbf{f} = (f_1, \dots, f_d)$ and $f_s, s = 1, \dots, d$ are Lipschitzcontinuous fluxes in the direction $x_s, s = 1, \dots, d$.

Finite volume method with reconstruction Continuous Problem

Space semidiscretization

2 Discontinuous Galerkin method with reconstruction

- Formulation
- Theoretical results and numerical experiments

- By \mathcal{F}_h we denote the set of all edges.
- For each Γ ∈ ℱ_h we define a unit normal vector n_Γ. For each face Γ ∈ ℱ_h^l there exist two neighbours K_Γ^(L), K_Γ^(R) ∈ ℑ_h.
- Over \mathcal{T}_h we define the broken Sobolev space

 $H^{k}(\Omega, \mathscr{T}_{h}) = \{v; v|_{K} \in H^{k}(K) \,\forall K \in \mathscr{T}_{h}\}$

and for $v \in H^1(\Omega,\mathscr{T}_h)$ and $\Gamma \in \mathscr{S}_h^2$ we set

 $|v|_{t^{(2)}}^{(1)} = |\text{trace of } v|_{t^{(2)}_{t}} \text{ on } \mathbb{E}, \quad |v|_{t^{(2)}_{t}}^{(2)} = |\text{trace of } v|_{t^{(2)}_{t}} \text{ on } \mathbb{E},$

- By \mathscr{F}_h we denote the set of all edges.
- For each Γ ∈ ℱ_h we define a unit normal vector n_Γ. For each face Γ ∈ ℱ_h^l there exist two neighbours K_Γ^(L), K_Γ^(R) ∈ 𝒯_h.
- Over \mathcal{T}_h we define the *broken Sobolev space*

 $H^{k}(\Omega, \mathscr{T}_{h}) = \{v; v|_{K} \in H^{k}(K) \; \forall K \in \mathscr{T}_{h}\}$

and for $v \in H^1(\Omega, \mathscr{T}_h)$ and $\Gamma \in \mathscr{F}_h^I$ we set

 $|v|_{\Gamma}^{(L)} = ext{ trace of } v|_{\mathcal{K}_{\Gamma}^{(L)}} ext{ on } \Gamma, \qquad v|_{\Gamma}^{(R)} = ext{ trace of } v|_{\mathcal{K}_{\Gamma}^{(R)}} ext{ on } \Gamma,$

- By \mathscr{F}_h we denote the set of all edges.
- For each Γ ∈ ℱ_h we define a unit normal vector n_Γ. For each face Γ ∈ ℱ^l_h there exist two neighbours K^(L)_Γ, K^(R)_Γ ∈ ℱ_h.
- Over \mathcal{T}_h we define the *broken Sobolev space*

 $H^{k}(\Omega, \mathscr{T}_{h}) = \{v; v|_{K} \in H^{k}(K) \; \forall K \in \mathscr{T}_{h}\}$

and for $v \in H^1(\Omega, \mathscr{T}_h)$ and $\Gamma \in \mathscr{F}_h^l$ we set

 $|v|_{\Gamma}^{(L)} = \text{ trace of } v|_{\kappa_{\Gamma}^{(L)}} \text{ on } \Gamma, \qquad v|_{\Gamma}^{(R)} = \text{ trace of } v|_{\kappa_{\Gamma}^{(R)}} \text{ on } \Gamma,$

- By \mathscr{F}_h we denote the set of all edges.
- For each Γ ∈ ℱ_h we define a unit normal vector n_Γ. For each face Γ ∈ ℱ_h^I there exist two neighbours K_Γ^(L), K_Γ^(R) ∈ ℱ_h.
- Over \mathcal{T}_h we define the broken Sobolev space

$$H^{k}(\Omega,\mathscr{T}_{h}) = \{v; v|_{K} \in H^{k}(K) \; \forall K \in \mathscr{T}_{h}\}$$

and for $v \in H^1(\Omega, \mathscr{T}_h)$ and $\Gamma \in \mathscr{F}_h^l$ we set

$$v|_{\Gamma}^{(L)} = \text{ trace of } v|_{\mathcal{K}_{\Gamma}^{(L)}} \text{ on } \Gamma, \qquad v|_{\Gamma}^{(R)} = \text{ trace of } v|_{\mathcal{K}_{\Gamma}^{(R)}} \text{ on } \Gamma,$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

We define the space of discontinuous piecewise polynomial functions

$$S_h^n = \{ \mathbf{v}; \mathbf{v}|_K \in P_n(K) \ \forall K \in \mathscr{T}_h \},$$

where $P_n(K)$ is the set of all polynomials on K of degree $\leq n$.

- S_h^0 finite volume space,
- Sⁿ_h discontinuous Galerkin space,
- S^N_h, N > n Higher order DG reconstructions.

(日) (圖) (E) (E) (E)

We define the space of discontinuous piecewise polynomial functions

$$S_h^n = \{ \mathbf{v}; \mathbf{v}|_K \in P_n(K) \ \forall K \in \mathscr{T}_h \},$$

where $P_n(K)$ is the set of all polynomials on K of degree $\leq n$.

• S_h^0 - finite volume space,

- Sⁿ_h discontinuous Galerkin space,
- S_h^N , N > n Higher order DG reconstructions.

(日) (圖) (E) (E) (E)

We define the space of discontinuous piecewise polynomial functions

$$S_h^n = \{ \mathbf{v}; \mathbf{v}|_K \in P_n(K) \ \forall K \in \mathscr{T}_h \},$$

where $P_n(K)$ is the set of all polynomials on K of degree $\leq n$.

- S_h^0 finite volume space,
- Sⁿ_h discontinuous Galerkin space,
- S_h^N , N > n Higher order DG reconstructions.

(日) (圖) (E) (E) (E)

We define the space of discontinuous piecewise polynomial functions

$$S_h^n = \{ \mathbf{v}; \mathbf{v}|_K \in P_n(K) \ \forall K \in \mathscr{T}_h \},$$

where $P_n(K)$ is the set of all polynomials on K of degree $\leq n$.

- S_h^0 finite volume space,
- S_h^n discontinuous Galerkin space,
- S_h^N , N > n Higher order DG reconstructions.

・ロト ・四ト ・ヨト ・ヨト

We integrate over $K \in \mathscr{T}_h$ and apply Green's theorem

$$\frac{d}{dt}\int_{K}u(t)\,dx+\int_{\partial K}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We define

$$\bar{u}_K(t) := \frac{1}{|K|} \int_K u(t) \, dx$$

and obtain

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

$U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$

We integrate over $K \in \mathscr{T}_h$ and apply Green's theorem

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We define

$$\bar{u}_{K}(t) := \frac{1}{|K|} \int_{K} u(t) \, dx$$

and obtain

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

 $U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$

We integrate over $K \in \mathscr{T}_h$ and apply Green's theorem

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We define

$$\bar{u}_{K}(t) := \frac{1}{|K|} \int_{K} u(t) \, dx$$

and obtain

$$\frac{d}{dt}\bar{u}_{\mathcal{K}}(t)+\frac{1}{|\mathcal{K}|}\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

 $U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$

< 同 > < 三 > < 三

We integrate over $K \in \mathscr{T}_h$ and apply Green's theorem

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We define

$$\bar{u}_{K}(t) := \frac{1}{|K|} \int_{K} u(t) \, dx$$

and obtain

$$\frac{d}{dt}\bar{u}_{\mathcal{K}}(t)+\frac{1}{|\mathcal{K}|}\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,dS=0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

$$U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T).$$

The boundary convective terms will be treated with the aid of a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n} \, dS \approx \int_{\Gamma} H(U_h^{N,(L)}, U_h^{N,(R)}, \mathbf{n}) \, dS.$$

_emma

The averages of the exact solution *u* satisfy

$$\frac{d}{dt}\bar{u}_{K}(t) + \frac{1}{|K|} \int_{\partial K} H(U_{h}^{N,(L)}, U_{h}^{N,(R)}, \mathbf{n}) \, dS = O(h^{N})$$

Lipschitz continuity and consistency of *H u* - *U*^N_h = *O*(*h*^N).

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

The boundary convective terms will be treated with the aid of a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n} \, dS \approx \int_{\Gamma} H(U_h^{N,(L)}, U_h^{N,(R)}, \mathbf{n}) \, dS.$$

Lemma

The averages of the exact solution *u* satisfy

$$\frac{d}{dt}\bar{u}_{K}(t) + \frac{1}{|K|} \int_{\partial K} H(U_{h}^{N,(L)}, U_{h}^{N,(R)}, \mathbf{n}) \, dS = O(h^{N}).$$

Lipschitz continuity and consistency of *H u* - U^N_h = O(h^N).

< 日 > < 回 > < 回 > < 回 > < 回 > <

3

The boundary convective terms will be treated with the aid of a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n} \, dS \approx \int_{\Gamma} H(U_h^{N,(L)}, U_h^{N,(R)}, \mathbf{n}) \, dS.$$

Lemma

The averages of the exact solution *u* satisfy

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H(U_{h}^{N,(L)},U_{h}^{N,(R)},\mathbf{n})\,dS=O(h^{N}).$$

Lipschitz continuity and consistency of H

•
$$u - U_h^N = O(h^N)$$

Definition (FV reconstruction problem)

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given \bar{v}_K for all $K \in \mathscr{T}_h$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^0 \to S_h^N$ by $R \bar{v} := v_h^N$.

Definition (Reconstructed FV scheme)

We seek $u_h(t) \in S_h^0$ such that

$$\frac{d}{dt}u_{h,K}(t) + \frac{1}{|K|}\int_{\partial K}H((Ru_h)^{(L)}, (Ru_h)^{(R)}, \mathbf{n})\,dS = 0.$$

_emma

The exact solution u satisfies

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N}).$$

Václav Kučera A new reconstruction-enhanced discontinuous Galerkin meth

Definition (FV reconstruction problem)

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given \bar{v}_K for all $K \in \mathscr{T}_h$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^0 \to S_h^N$ by $R \bar{v} := v_h^N$.

Definition (Reconstructed FV scheme)

We seek $u_h(t) \in S_h^0$ such that

$$\frac{d}{dt}u_{h,K}(t) + \frac{1}{|K|}\int_{\partial K}H((Ru_h)^{(L)}, (Ru_h)^{(R)}, \mathbf{n})\,dS = 0$$

_emma

The exact solution u satisfies

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N}).$$

Václav Kučera A new reconstruction-enhanced discontinuous Galerkin meth

Definition (FV reconstruction problem)

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given \bar{v}_K for all $K \in \mathscr{T}_h$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^0 \to S_h^N$ by $R \bar{v} := v_h^N$.

Definition (Reconstructed FV scheme)

We seek $u_h(t) \in S_h^0$ such that

$$\frac{d}{dt}u_{h,K}(t) + \frac{1}{|K|}\int_{\partial K}H((Ru_h)^{(L)}, (Ru_h)^{(R)}, \mathbf{n})\,dS = 0.$$

Lemma

The exact solution u satisfies

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N}).$$

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N}).$$

• This indicates, that we may expect

$$\|u(t)-R\bar{u}_h(t)\|=O(h^N),$$

although, in principle, we have only

$$\|u(t)-\bar{u}_h(t)\|=O(h).$$

This is confirmed by numerical experiments

< 17 ▶

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N}).$$

• This indicates, that we may expect

$$\|u(t)-R\bar{u}_h(t)\|=O(h^N),$$

although, in principle, we have only

$$\|u(t)-\bar{u}_h(t)\|=O(h).$$

• This is confirmed by numerical experiments

Continuous Problem Space semidiscretization

'Standard' FV reconstruction operator

Reconstruction stencil

For each $K \in \mathscr{T}_h$ we choose the *reconstruction stencil* $S_K \subset \mathscr{T}_h$, usually some neighborhood of K.

For each $K \in \mathscr{T}_h$, we seek a polynomial $p_{S_K} \in P^N(S_K)$, s.t.

$$\frac{1}{|K'|}\int_{K'}p_{S_K}dx=u_h\big|_{K'}\quad \forall K'\in S_K.$$

Finally, we define $(Ru_h)|_{\mathcal{K}} := p_{S_{\mathcal{K}}}|_{\mathcal{K}}$ for all $\mathcal{K} \in \mathcal{T}_h$

・ロト ・四ト ・ヨト ・ヨト

Continuous Problem Space semidiscretization

'Standard' FV reconstruction operator

Reconstruction stencil

For each $K \in \mathscr{T}_h$ we choose the *reconstruction stencil* $S_K \subset \mathscr{T}_h$, usually some neighborhood of K.

For each $K \in \mathscr{T}_h$, we seek a polynomial $p_{\mathcal{S}_K} \in \mathcal{P}^N(\mathcal{S}_K)$, s.t.

$$\frac{1}{|K'|}\int_{K'}p_{\mathcal{S}_{K}}\,dx=u_{h}\big|_{K'}\quad\forall K'\in\mathcal{S}_{K}.$$

Finally, we define $(Ru_h)|_{\mathcal{K}} := p_{\mathcal{S}_{\mathcal{K}}}|_{\mathcal{K}}$ for all $\mathcal{K} \in \mathscr{T}_h$.

Continuous Problem Space semidiscretization

Spectral FV reconstruction operator

Spectral and control volumes

Let \mathscr{T}_h^S be a partition of $\overline{\Omega}$ into simplices $S \in \mathscr{T}_h^S$, called *spectral volumes*. The FV triangulation \mathscr{T}_h is formed by subdividing each $S \in \mathscr{T}_h^S$ into so-called *control volumes* $K \subset S$.

For each spectral volume $S\in \mathscr{T}_h^S$ we seek $p_S\in \mathcal{P}^N(S),$ s.t.

$$\frac{1}{|K|}\int_{K}p_{S}\,dx=u_{h}\big|_{K}\quad\forall K\subset S,\,K\in\mathscr{T}_{h}.$$

Finally, we define $(Ru_h)|_K := p_S|_K$ for all $K \subset S$.

Continuous Problem Space semidiscretization

Spectral FV reconstruction operator

Spectral and control volumes

Let \mathscr{T}_h^S be a partition of $\overline{\Omega}$ into simplices $S \in \mathscr{T}_h^S$, called *spectral volumes*. The FV triangulation \mathscr{T}_h is formed by subdividing each $S \in \mathscr{T}_h^S$ into so-called *control volumes* $K \subset S$.

For each spectral volume $S \in \mathscr{T}_h^S$ we seek $p_S \in P^N(S)$, s.t.

$$\frac{1}{|K|}\int_{K}p_{\mathcal{S}}\,dx=u_{h}\big|_{K}\quad\forall K\subset \mathcal{S},\,K\in\mathscr{T}_{h}.$$

Finally, we define $(Ru_h)|_{\mathcal{K}} := p_{\mathcal{S}}|_{\mathcal{K}}$ for all $\mathcal{K} \subset \mathcal{S}$.

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for N > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.
- Spectral FV
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
 - No problems near boundaries.
 - Explicit construction in 1D.

(日) (四) (三) (三)

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for N > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.
- Spectral FV
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
 - No problems near boundaries.
 - Explicit construction in 1D.

(日) (四) (三) (三)

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for *N* > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.

Spectral FV

- All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
- The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
- No problems near boundaries.
- Explicit construction in 1D.

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for *N* > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.

Spectral FV

- All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
- The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
- No problems near boundaries.
- Explicit construction in 1D.

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for *N* > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.
- Spectral FV
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
 - No problems near boundaries.
 - Explicit construction in 1D.

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for *N* > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.
- Spectral FV
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
 - No problems near boundaries.
 - Explicit construction in 1D.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for *N* > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.
- Spectral FV
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
 - No problems near boundaries.
 - Explicit construction in 1D.

(4月) (1日) (日)
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Stencil size impractical for *N* > 2.
- Construction of stencils near $\partial \Omega$.
- Explicit construction in 1D.
- Spectral FV
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - The construction of partitions of spectral volumes into control volumes is not straightforward for higher N and 3D.
 - No problems near boundaries.
 - Explicit construction in 1D.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Finite volume method with reconstruction Continuous Problem

• Space semidiscretization

2 Discontinuous Galerkin method with reconstruction

Formulation

Theoretical results and numerical experiments

Definition

Let $v \in L^2(\Omega)$. Define by $\prod_{h=1}^{n} v$ the $L^2(\Omega)$ -projection of v on S_h^n :

$$\Pi_h^n v \in S_h^n, \quad \left(\Pi_h^n v - v, \varphi_h^n\right) = 0, \qquad \forall \, \varphi_h^n \in S_h^n.$$

The basis of the FV schemes consisted of the identity

$$\frac{d}{dt}\bar{u}_{K}(t) + \frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)}, (R\bar{u})^{(R)}, \mathbf{n})\,dS = O(h^{N})$$

Since $\bar{u}(t) = \prod_{h=0}^{0} u(t)$, we may view this as an identity for $\prod_{h=0}^{0} u(t)$.

We shall generalize this relation from $\Pi_h^0 u(t)$ to $\Pi_h^n u(t)$.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Definition

Let $v \in L^2(\Omega)$. Define by $\prod_{h=1}^{n} v$ the $L^2(\Omega)$ -projection of v on S_h^n :

$$\Pi_h^n v \in S_h^n, \quad \left(\Pi_h^n v - v, \varphi_h^n\right) = 0, \qquad \forall \varphi_h^n \in S_h^n.$$

The basis of the FV schemes consisted of the identity

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N})$$

Since $\bar{u}(t) = \prod_{h=0}^{0} u(t)$, we may view this as an identity for $\prod_{h=0}^{0} u(t)$.

We shall generalize this relation from $\Pi_h^0 u(t)$ to $\Pi_h^n u(t)$.

イロト イヨト イヨト イヨト

Definition

Let $v \in L^2(\Omega)$. Define by $\prod_{h=1}^{n} v$ the $L^2(\Omega)$ -projection of v on S_h^n :

$$\Pi_h^n \nu \in S_h^n, \quad \left(\Pi_h^n \nu - \nu, \varphi_h^n\right) = 0, \qquad \forall \, \varphi_h^n \in S_h^n.$$

The basis of the FV schemes consisted of the identity

$$\frac{d}{dt}\bar{u}_{K}(t)+\frac{1}{|K|}\int_{\partial K}H((R\bar{u})^{(L)},(R\bar{u})^{(R)},\mathbf{n})\,dS=O(h^{N})$$

Since $\bar{u}(t) = \prod_{h=0}^{0} u(t)$, we may view this as an identity for $\prod_{h=0}^{0} u(t)$.

We shall generalize this relation from $\Pi_h^0 u(t)$ to $\Pi_h^n u(t)$.

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,\varphi_{h}^{n}\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,\varphi_{h}^{n}\big|_{\mathcal{K}}\,dS-\int_{\mathcal{K}}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}\,dx=0.$$

By summing over all $K \in \mathscr{T}_h$ and rearranging, we get

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

 $U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$

(日)

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,\varphi_{h}^{n}\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,\varphi_{h}^{n}\big|_{\mathcal{K}}\,dS-\int_{\mathcal{K}}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}\,dx=0.$$

By summing over all $K \in \mathscr{T}_h$ and rearranging, we get

$$\frac{d}{dt}\int_{\Omega} u(t) \varphi_h^n dx + \sum_{\Gamma \in \mathscr{F}_h} \int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n} [\varphi_h^n] dS - \sum_{K \in \mathscr{F}_h} \int_{K} \mathbf{f}(u) \cdot \nabla \varphi_h^n dx = 0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

 $U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$

(日)

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,\varphi_{h}^{n}\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,\varphi_{h}^{n}\big|_{\mathcal{K}}\,dS-\int_{\mathcal{K}}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}\,dx=0.$$

By summing over all $K \in \mathscr{T}_h$ and rearranging, we get

$$\frac{d}{dt}\int_{\Omega} u(t) \varphi_h^n dx + \sum_{\Gamma \in \mathscr{F}_h} \int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n} [\varphi_h^n] dS - \sum_{K \in \mathscr{F}_h} \int_{K} \mathbf{f}(u) \cdot \nabla \varphi_h^n dx = 0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

$$U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,\varphi_{h}^{n}\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,\varphi_{h}^{n}\big|_{\mathcal{K}}\,dS-\int_{\mathcal{K}}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}\,dx=0.$$

By summing over all $K \in \mathscr{T}_h$ and rearranging, we get

$$\frac{d}{dt}\int_{\Omega}\Pi_{h}^{n}u(t)\varphi_{h}^{n}dx+\sum_{\Gamma\in\mathscr{F}_{h}}\int_{\Gamma}\mathbf{f}(u)\cdot\mathbf{n}[\varphi_{h}^{n}]dS-\sum_{K\in\mathscr{T}_{h}}\int_{K}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}dx=0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

$$U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

$$\frac{d}{dt}\int_{\mathcal{K}}u(t)\,\varphi_{h}^{n}\,dx+\int_{\partial\mathcal{K}}\mathbf{f}(u)\cdot\mathbf{n}\,\varphi_{h}^{n}\big|_{\mathcal{K}}\,dS-\int_{\mathcal{K}}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}\,dx=0.$$

By summing over all $K \in \mathscr{T}_h$ and rearranging, we get

$$\frac{d}{dt}\int_{\Omega}\Pi_{h}^{n}u(t)\varphi_{h}^{n}dx+\sum_{\Gamma\in\mathscr{F}_{h}}\int_{\Gamma}\mathbf{f}(u)\cdot\mathbf{n}[\varphi_{h}^{n}]dS-\sum_{K\in\mathscr{F}_{h}}\int_{K}\mathbf{f}(u)\cdot\nabla\varphi_{h}^{n}dx=0.$$

We assume, that there exists a piecewise polynomial function $U_h^N(t) \in S_h^N$ such that

$$U_h^N(x,t) = u(x,t) + O(h^{N+1}), \quad \forall x \in \Omega, \, \forall t \in (0,T).$$

(日)

Formulation Theoretical results and numerical experiments

Again, we introduce a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n}[\varphi_h^n] \, dS \approx \int_{\Gamma} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi_h^n] \, dS.$$

Definition

$$b_h(u,\varphi) = \int_{\mathscr{F}_h} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi] \, dS - \sum_{K \in \mathscr{T}_h} \int_K \mathbf{f}(u) \cdot \nabla \varphi \, dx.$$

Lemma

The projections $\Pi_h^n u(t)$ of the exact solution satisfy

 $\frac{d}{dt} \big(\Pi_h^n u(t), \varphi_h^n \big) + b_h \big(U_h^N(t), \varphi_h^n \big) = O(h^{N+1}) \| \varphi_h^n \|_{L^2(\Omega)}, \quad \forall \varphi_h^n \in S_h^n$

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

Formulation Theoretical results and numerical experiments

Again, we introduce a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n}[\varphi_h^n] \, dS \approx \int_{\Gamma} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi_h^n] \, dS.$$

Definition

$$b_h(u,\varphi) = \int_{\mathscr{F}_h} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi] \, dS - \sum_{K \in \mathscr{T}_h} \int_K \mathbf{f}(u) \cdot \nabla \varphi \, dx.$$

_emma

The projections $\Pi_h^n u(t)$ of the exact solution satisfy

 $\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(U_h^N(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}, \quad \forall \varphi_h^n \in S_h^n.$

Formulation Theoretical results and numerical experiments

Again, we introduce a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n}[\varphi_h^n] \, dS \approx \int_{\Gamma} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi_h^n] \, dS.$$

Definition

$$b_h(u,\varphi) = \int_{\mathscr{F}_h} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi] \, dS - \sum_{K \in \mathscr{T}_h} \int_K \mathbf{f}(u) \cdot \nabla \varphi \, dx.$$

Lemma

The projections $\prod_{h=1}^{n} u(t)$ of the exact solution satisfy

$$\frac{d}{dt}\big(\Pi_h^n u(t), \varphi_h^n\big) + b_h\big(U_h^N(t), \varphi_h^n\big) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}, \quad \forall \varphi_h^n \in S_h^n.$$

Formulation Theoretical results and numerical experiments

Again, we introduce a numerical flux $H(u, v, \mathbf{n})$:

$$\int_{\Gamma} \mathbf{f}(u) \cdot \mathbf{n}[\varphi_h^n] \, dS \approx \int_{\Gamma} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi_h^n] \, dS.$$

Definition

$$b_h(u,\varphi) = \int_{\mathscr{F}_h} H(u^{(L)}, u^{(R)}, \mathbf{n})[\varphi] \, dS - \sum_{K \in \mathscr{T}_h} \int_K \mathbf{f}(u) \cdot \nabla \varphi \, dx.$$

Lemma

The projections $\prod_{h=1}^{n} u(t)$ of the exact solution satisfy

$$\frac{d}{dt}\big(\Pi_h^n u(t), \varphi_h^n\big) + b_h\big(U_h^N(t), \varphi_h^n\big) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}, \quad \forall \varphi_h^n \in S_h^n.$$

Formulation Theoretical results and numerical experiments

Definition (DG Reconstruction problem)

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given $\Pi_h^n v \in S_h^n$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^n \to S_h^N$ by $R \Pi_h^n v := v_h^N$.

Definition (Reconstructed DG scheme)

We seek $u_h^n \in S_h^n$ such that

$$rac{d}{dt}ig(u_h^n(t), arphi_h^nig) + b_hig(R\,u_h^n(t), arphi_h^nig) = 0, \quad orall arphi_h^n \in S_h^n$$

_emma

The exact solution *u* satisfies

 $\frac{d}{dt}\left(\Pi_h^n u(t), \varphi_h^n\right) + b_h\left(R \Pi_h^n u(t), \varphi_h^n\right) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}$

Václav Kučera A new reconstruction-enhanced discontinuous Galerkin meth

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given $\Pi_h^n v \in S_h^n$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^n \to S_h^N$ by $R \Pi_h^n v := v_h^N$.

Definition (Reconstructed DG scheme)

We seek $u_h^n \in S_h^n$ such that

$$rac{d}{dt}ig(u_h^n(t), arphi_h^nig) + b_hig(R\,u_h^n(t), arphi_h^nig) = 0, \quad orall arphi_h^n \in S_h^n.$$

_emma

The exact solution *u* satisfies

 $\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given $\Pi_h^n v \in S_h^n$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^n \to S_h^N$ by $R \Pi_h^n v := v_h^N$.

Definition (Reconstructed DG scheme)

We seek $u_h^n \in S_h^n$ such that

$$\frac{d}{dt}(u_h^n(t),\varphi_h^n)+b_h(Ru_h^n(t),\varphi_h^n)=0,\quad\forall\varphi_h^n\in S_h^n.$$

_emma

The exact solution *u* satisfies

 $\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given $\Pi_h^n v \in S_h^n$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^n \to S_h^N$ by $R \Pi_h^n v := v_h^N$.

Definition (Reconstructed DG scheme)

We seek $u_h^n \in S_h^n$ such that

$$\frac{d}{dt}(u_h^n(t),\varphi_h^n)+b_h(Ru_h^n(t),\varphi_h^n)=0,\quad\forall\varphi_h^n\in S_h^n.$$

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$$

Let $v : \Omega \to \mathbb{R}$ be sufficiently regular. Given $\Pi_h^n v \in S_h^n$, find $v_h^N \in S_h^N$ such that $v - v_h^N = O(h^{N+1})$ in Ω . We define the corresponding reconstruction operator $R : S_h^n \to S_h^N$ by $R \Pi_h^n v := v_h^N$.

Definition (Reconstructed DG scheme)

We seek $u_h^n \in S_h^n$ such that

$$\frac{d}{dt}(u_h^n(t),\varphi_h^n)+b_h(Ru_h^n(t),\varphi_h^n)=0,\quad\forall\varphi_h^n\in S_h^n.$$

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$$

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$$

• This indicates, that we may expect

$$||u(t) - Ru_h^n(t)|| = O(h^N),$$

although, in principle, we have only

$$||u(t) - u_h^n(t)|| = O(h^n).$$

This is confirmed by numerical experiments.

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$$

• This indicates, that we may expect

$$||u(t) - Ru_h^n(t)|| = O(h^N),$$

although, in principle, we have only

$$||u(t) - u_h^n(t)|| = O(h^n).$$

This is confirmed by numerical experiments.

(日)

Lemma

The exact solution *u* satisfies

$$\frac{d}{dt}(\Pi_h^n u(t), \varphi_h^n) + b_h(R\Pi_h^n u(t), \varphi_h^n) = O(h^{N+1}) \|\varphi_h^n\|_{L^2(\Omega)}.$$

• This indicates, that we may expect

$$||u(t) - Ru_h^n(t)|| = O(h^N),$$

although, in principle, we have only

$$||u(t) - u_h^n(t)|| = O(h^n).$$

This is confirmed by numerical experiments.

(日)

Formulation Theoretical results and numerical experiments

Analogy of 'standard' FV reconstruction operator

Reconstruction stencil

For each $K \in \mathcal{T}_h$ we choose the *reconstruction stencil* $S_K \subset \mathcal{T}_h$, usually some neighborhood of K.

For each $K \in \mathscr{T}_h$, we seek a polynomial $p_{S_K} \in P^N(S_K)$, s.t.

$$(\prod_{h}^{n}p_{S_{K}})|_{K'}=u_{h}^{n}|_{K'}\quad\forall K'\in S_{K}.$$

Finally, we define $(Ru_h^n)|_K := p_{S_K}|_K$ for all $K \in \mathcal{T}_h$.

・ロット (母) ・ ヨ) ・ ・ ヨ)

Formulation Theoretical results and numerical experiments

Analogy of 'standard' FV reconstruction operator

Reconstruction stencil

For each $K \in \mathscr{T}_h$ we choose the *reconstruction stencil* $S_K \subset \mathscr{T}_h$, usually some neighborhood of K.

For each $K \in \mathscr{T}_h$, we seek a polynomial $p_{\mathcal{S}_K} \in P^N(\mathcal{S}_K)$, s.t.

$$(\Pi_h^n p_{\mathcal{S}_{\mathcal{K}}})|_{\mathcal{K}'} = u_h^n|_{\mathcal{K}'} \quad \forall \mathcal{K}' \in \mathcal{S}_{\mathcal{K}}.$$

Finally, we define $(Ru_h^n)|_{\mathcal{K}} := p_{\mathcal{S}_{\mathcal{K}}}|_{\mathcal{K}}$ for all $\mathcal{K} \in \mathscr{T}_h$.

Formulation Theoretical results and numerical experiments

Analogy of 'spectral' FV reconstruction operator

Spectral and control volumes

Let \mathscr{T}_h^S be a partition of $\overline{\Omega}$ into simplices $S \in \mathscr{T}_h^S$, called *spectral volumes*. The DG triangulation \mathscr{T}_h is formed by subdividing each $S \in \mathscr{T}_h^S$ into so-called *control volumes* $K \subset S$.

For each spectral volume $S \in \mathcal{T}_h^S$ we seek $p_S \in P^N(S)$, s.t.

$\left(\prod_{h}^{n} p_{\mathcal{S}} \right) \Big|_{K} = u_{h}^{n} \Big|_{K}, \quad \forall K \subset \mathcal{S}, K \in \mathscr{T}_{h}.$

Finally, we define $(Ru_h^n)|_K := p_S|_K$ for all $K \subset S$.

Formulation Theoretical results and numerical experiments

Analogy of 'spectral' FV reconstruction operator

Spectral and control volumes

Let \mathscr{T}_h^S be a partition of $\overline{\Omega}$ into simplices $S \in \mathscr{T}_h^S$, called *spectral volumes*. The DG triangulation \mathscr{T}_h is formed by subdividing each $S \in \mathscr{T}_h^S$ into so-called *control volumes* $K \subset S$.

For each spectral volume $S \in \mathscr{T}_h^S$ we seek $p_S \in P^N(S)$, s.t.

$$(\Pi_h^n p_{\mathcal{S}})|_{\mathcal{K}} = u_h^n|_{\mathcal{K}}, \quad \forall \mathcal{K} \subset \mathcal{S}, \, \mathcal{K} \in \mathscr{T}_h.$$

Finally, we define $(Ru_h^n)|_{\mathcal{K}} := p_{\mathcal{S}}|_{\mathcal{K}}$ for all $\mathcal{K} \subset \mathcal{S}$.

- Stencil size need not be increased! To obtain higher orders we simply increase *n*.
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Construction of stencils near $\partial \Omega$.
- Spectral FV
 - The number of control volumes need not be increased! To obtain higher orders we simply increase *n*.
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - No problems near boundaries.

- Stencil size need not be increased! To obtain higher orders we simply increase *n*.
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Construction of stencils near $\partial \Omega$.

Spectral FV

- The number of control volumes need not be increased! To obtain higher orders we simply increase *n*.
- All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
- No problems near boundaries.

- Stencil size need not be increased! To obtain higher orders we simply increase *n*.
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Construction of stencils near $\partial \Omega$.
- Spectral FV
 - The number of control volumes need not be increased! To obtain higher orders we simply increase *n*.
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - No problems near boundaries.

- Stencil size need not be increased! To obtain higher orders we simply increase *n*.
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Construction of stencils near $\partial \Omega$.
- Spectral FV
 - The number of control volumes need not be increased! To obtain higher orders we simply increase *n*.
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - No problems near boundaries.

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Stencil size need not be increased! To obtain higher orders we simply increase *n*.
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Construction of stencils near $\partial \Omega$.
- Spectral FV
 - The number of control volumes need not be increased! To obtain higher orders we simply increase *n*.
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - No problems near boundaries.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Stencil size need not be increased! To obtain higher orders we simply increase *n*.
- *R* must be constructed (and stored) for each *K* ∈ *𝔅*_{*h*} independently (on unstructured meshes).
- Construction of stencils near $\partial \Omega$.
- Spectral FV
 - The number of control volumes need not be increased! To obtain higher orders we simply increase *n*.
 - All spectral volumes are affine equivalent ⇒ R is constructed and stored only on a reference configuration.
 - No problems near boundaries.

・ロ・ ・ 四・ ・ 回・ ・ 回・

- Test functions only of order *n* as opposed to *N*.
- Fewer quadrature points, flux evaluations.
- CFL condition permits larger time steps. Mass matrices of order n × n instead of N × N.
- The reconstruction procedure is problem-independent.

The von Neumann neighborhood allows us to reconstruct:

- 1D: S_h^{3n+2} from S_h^n .
- 2D: S_h^{2n+1} from S_h^n .

- Test functions only of order *n* as opposed to *N*.
- Fewer quadrature points, flux evaluations.
- CFL condition permits larger time steps. Mass matrices of order n × n instead of N × N.
- The reconstruction procedure is problem-independent.

The von Neumann neighborhood allows us to reconstruct:

- 1D: S_h^{3n+2} from S_h^n .
- 2D: S_h^{2n+1} from S_h^n .

- Test functions only of order *n* as opposed to *N*.
- Fewer quadrature points, flux evaluations.
- CFL condition permits larger time steps. Mass matrices of order n × n instead of N × N.
- The reconstruction procedure is problem-independent.
- The von Neumann neighborhood allows us to reconstruct:
 - 1D: S_h^{3n+2} from S_h^n .
 - 2D: S_h^{2n+1} from S_h^n .

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

- Test functions only of order *n* as opposed to *N*.
- Fewer quadrature points, flux evaluations.
- CFL condition permits larger time steps. Mass matrices of order n × n instead of N × N.
- The reconstruction procedure is problem-independent.
- The von Neumann neighborhood allows us to reconstruct:
 - 1D: S_h^{3n+2} from S_h^n .
 - 2D: S_h^{2n+1} from S_h^n .

・ロト ・ 四 ト ・ 回 ト ・ 回 ト
Reconstructed DG vs Standard DG

- Test functions only of order *n* as opposed to *N*.
- Fewer quadrature points, flux evaluations.
- CFL condition permits larger time steps. Mass matrices of order n × n instead of N × N.
- The reconstruction procedure is problem-independent.

The von Neumann neighborhood allows us to reconstruct:

• 1D:
$$S_h^{3n+2}$$
 from S_h^n

• 2D: S_h^{2n+1} from S_h^n .

(日本) (日本) (日本)

Finite volume method with reconstruction Continuous Problem

• Space semidiscretization

Discontinuous Galerkin method with reconstruction Formulation

• Theoretical results and numerical experiments

Definition (Reconstructed DG scheme)

We seek $u_h^{n,k} \in S_h^n$ such that

$$\left(rac{u_h^{n,k+1}-u_h^{n,k}}{ au_k}, \varphi_h^n
ight)+b_h(Ru_h^{n,k}, \varphi_h^n)=0, \quad \forall \varphi_h^n\in S_h^n.$$

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(\frac{u_h^{N,k+1}-u_h^{N,k}}{\tau_k},\varphi_h^N\right)+b_h(R\Pi_h^n u_h^{N,k},\varphi_h^N)=0,\quad\forall\varphi_h^N\in\mathcal{S}_h^N.$$

Lemma

 $u_h^{n,k} = \Pi_h^n u_h^{N,k}$

-

Definition (Reconstructed DG scheme)

We seek $u_h^{n,k} \in S_h^n$ such that

$$\left(rac{u_h^{n,k+1}-u_h^{n,k}}{ au_k}, \varphi_h^n
ight)+b_h(Ru_h^{n,k}, \varphi_h^n)=0, \quad \forall \varphi_h^n\in S_h^n.$$

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(rac{u_h^{N,k+1}-u_h^{N,k}}{ au_k}, \varphi_h^N
ight)+b_hig(R\Pi_h^n u_h^{N,k}, \varphi_h^Nig)=0, \quad orall \varphi_h^N\in S_h^N.$$

Lemma

 $u_h^{n,k} = \Pi_h^n u_h^{N,k}$

-

Definition (Reconstructed DG scheme)

We seek $u_h^{n,k} \in S_h^n$ such that

$$\left(rac{u_h^{n,k+1}-u_h^{n,k}}{ au_k}, \varphi_h^n
ight)+b_h(Ru_h^{n,k}, \varphi_h^n)=0, \quad \forall \varphi_h^n\in S_h^n.$$

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(rac{u_h^{N,k+1}-u_h^{N,k}}{ au_k}, \varphi_h^N
ight)+b_h\left(R\Pi_h^n u_h^{N,k}, \varphi_h^N
ight)=0, \quad orall \varphi_h^N\in S_h^N.$$

Lemma

$$u_h^{n,k} = \Pi_h^n u_h^{N,k}$$

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(\frac{u_h^{N,k+1}-u_h^{N,k}}{\tau_k},\varphi_h^N\right)+b_h(R\Pi_h^n u_h^{N,k},\varphi_h^N)=0,\quad\forall\varphi_h^N\in S_h^N$$

This is similar to the standard DG scheme

Definition (Standard DG scheme)

We seek $\tilde{u}_h^{N,k} \in S_h^N$ such that

$$\left(\frac{\tilde{u}_h^{N,k+1}-\tilde{u}_h^{N,k}}{\tau_k},\varphi_h^N\right)+b_h(\tilde{u}_h^{N,k},\varphi_h^N)=0,\quad\forall\varphi_h^N\in\mathcal{S}_h^N$$

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(\frac{u_h^{N,k+1}-u_h^{N,k}}{\tau_k},\varphi_h^N\right)+b_h\big(R\Pi_h^n u_h^{N,k},\varphi_h^N\big)=0,\quad\forall\varphi_h^N\in\mathcal{S}_h^N$$

This is similar to the standard DG scheme

Definition (Standard DG scheme)

We seek $\tilde{u}_h^{N,k} \in S_h^N$ such that

$$\left(rac{ ilde{u}_h^{N,k+1}- ilde{u}_h^{N,k}}{ au_k}, arphi_h^N
ight)+b_h(ilde{u}_h^{N,k}, arphi_h^N)=0, \quad orall arphi_h^N\in \mathcal{S}_h^N.$$

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(\frac{u_h^{N,k+1}-u_h^{N,k}}{\tau_k},\varphi_h^N\right)+b_h\big(R\Pi_h^n u_h^{N,k},\varphi_h^N\big)=0,\quad\forall\varphi_h^N\in\mathcal{S}_h^N.$$

This is similar to the standard DG scheme

Definition (Standard DG scheme)

We seek $\tilde{u}_h^{N,k} \in S_h^N$ such that

$$\left(\frac{\tilde{u}_{h}^{N,k+1}-\tilde{u}_{h}^{N,k}}{\tau_{k}},\varphi_{h}^{N}\right)+b_{h}\big(\tilde{u}_{h}^{N,k},\varphi_{h}^{N}\big)=0,\quad\forall\varphi_{h}^{N}\in\mathcal{S}_{h}^{N}$$

(日)

Definition (Auxiliary DG scheme)

We seek $u_h^{N,k} \in S_h^N$ such that

$$\left(\frac{u_h^{N,k+1}-u_h^{N,k}}{\tau_k},\varphi_h^N\right)+b_h\big(\textbf{R}\Pi_h^n u_h^{N,k},\varphi_h^N\big)=0,\quad\forall\varphi_h^N\in \mathcal{S}_h^N.$$

This is similar to the standard DG scheme

Definition (Standard DG scheme)

We seek $\tilde{u}_h^{N,k} \in S_h^N$ such that

$$\left(\frac{\tilde{u}_{h}^{N,k+1}-\tilde{u}_{h}^{N,k}}{\tau_{k}},\varphi_{h}^{N}\right)+b_{h}\big(\tilde{u}_{h}^{N,k},\varphi_{h}^{N}\big)=0,\quad\forall\varphi_{h}^{N}\in\mathcal{S}_{h}^{N}$$

(日)

Formulation Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme might possibly be derived from standard DG estimates and a thorough understanding of the operator $R\Pi_h^n : L^2(\Omega) \to S_h^N$.

Lemma

Let $v \in H^{N+1}(\Omega)$, $v_h \in S_h^N$. Then

$$\|v - R\Pi_h^n v\|_{L^2(\Omega)} \le Ch^{N+1} \|v\|_{H^{N+1}(\Omega)},$$

$$\|v_h - R\Pi_h^n v_h\|_{L^2(\Omega)} \le C \inf_{w \in H^{N+1}(\Omega)} (h^{N+1} \|w\|_{H^{N+1}(\Omega)} + \|v_h - w\|_{L^2(\Omega)}).$$

• Holds for the "spectral volume" construction of *R*.

- Holds for the "standard" construction of *R* for special (trivial) cases.
- Based on a very general Bramble-Hilbert lemma.
- Estimate #2 nice, but useless.

Formulation Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme might possibly be derived from standard DG estimates and a thorough understanding of the operator $R\Pi_h^n : L^2(\Omega) \to S_h^N$.

Lemma

Let
$$v \in H^{N+1}(\Omega), v_h \in S_h^N$$
. Then

$$\|v - R\Pi_h^n v\|_{L^2(\Omega)} \le Ch^{N+1} |v|_{H^{N+1}(\Omega)}, \\ \|v_h - R\Pi_h^n v_h\|_{L^2(\Omega)} \le C \inf_{w \in H^{N+1}(\Omega)} (h^{N+1} |w|_{H^{N+1}(\Omega)} + \|v_h - w\|_{L^2(\Omega)}).$$

- Holds for the "spectral volume" construction of *R*.
- Holds for the "standard" construction of *R* for special (trivial) cases.
- Based on a very general Bramble-Hilbert lemma.
- Estimate #2 nice, but useless.

Formulation Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme might possibly be derived from standard DG estimates and a thorough understanding of the operator $R\Pi_h^n : L^2(\Omega) \to S_h^N$.

Lemma

Let
$$v \in H^{N+1}(\Omega)$$
, $v_h \in S_h^N$. Then

$$\|v - R\Pi_h^n v\|_{L^2(\Omega)} \le Ch^{N+1} |v|_{H^{N+1}(\Omega)},$$

$$\|v_h - R\Pi_h^n v_h\|_{L^2(\Omega)} \le C \inf_{w \in H^{N+1}(\Omega)} (h^{N+1} |w|_{H^{N+1}(\Omega)} + \|v_h - w\|_{L^2(\Omega)}).$$

• Holds for the "spectral volume" construction of *R*.

- Holds for the "standard" construction of *R* for special (trivial) cases.
- Based on a very general Bramble-Hilbert lemma.
- Estimate #2 nice, but useless.

Formulation Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme might possibly be derived from standard DG estimates and a thorough understanding of the operator $R\Pi_h^n : L^2(\Omega) \to S_h^N$.

Lemma

Let
$$v \in H^{N+1}(\Omega)$$
, $v_h \in S_h^N$. Then

$$\|v - R\Pi_h^n v\|_{L^2(\Omega)} \le Ch^{N+1} |v|_{H^{N+1}(\Omega)},$$

$$\|v_h - R\Pi_h^n v_h\|_{L^2(\Omega)} \le C \inf_{w \in H^{N+1}(\Omega)} (h^{N+1} |w|_{H^{N+1}(\Omega)} + \|v_h - w\|_{L^2(\Omega)}).$$

- Holds for the "spectral volume" construction of *R*.
- Holds for the "standard" construction of *R* for special (trivial) cases.
- Based on a very general Bramble-Hilbert lemma.
- Estimate #2 nice, but useless.

Formulation Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme might possibly be derived from standard DG estimates and a thorough understanding of the operator $R\Pi_h^n : L^2(\Omega) \to S_h^N$.

Lemma

Let
$$v \in H^{N+1}(\Omega)$$
, $v_h \in S_h^N$. Then

$$\|v - R\Pi_h^n v\|_{L^2(\Omega)} \le Ch^{N+1} |v|_{H^{N+1}(\Omega)},$$

$$\|v_h - R\Pi_h^n v_h\|_{L^2(\Omega)} \le C \inf_{w \in H^{N+1}(\Omega)} (h^{N+1} |w|_{H^{N+1}(\Omega)} + \|v_h - w\|_{L^2(\Omega)}).$$

- Holds for the "spectral volume" construction of *R*.
- Holds for the "standard" construction of *R* for special (trivial) cases.
- Based on a very general Bramble-Hilbert lemma.
- Estimate #2 nice, but useless.

Formulation Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme might possibly be derived from standard DG estimates and a thorough understanding of the operator $R\Pi_h^n : L^2(\Omega) \to S_h^N$.

Lemma

Let
$$v \in H^{N+1}(\Omega)$$
, $v_h \in S_h^N$. Then

$$\|v - R\Pi_h^n v\|_{L^2(\Omega)} \le Ch^{N+1} |v|_{H^{N+1}(\Omega)},$$

$$\|v_h - R\Pi_h^n v_h\|_{L^2(\Omega)} \le C \inf_{w \in H^{N+1}(\Omega)} (h^{N+1} |w|_{H^{N+1}(\Omega)} + \|v_h - w\|_{L^2(\Omega)}).$$

- Holds for the "spectral volume" construction of *R*.
- Holds for the "standard" construction of *R* for special (trivial) cases.
- Based on a very general Bramble-Hilbert lemma.
- Estimate #2 nice, but useless.

Numerical experiments

N	$ e_h _{L^{\infty}(\Omega)}$	α	$ \boldsymbol{e}_h _{L^2(\Omega)}$	α	$ e_h _{H^1(\Omega,\mathscr{T}_h)}$	α
4	9.30E-01	—	6.23E-01	—	4.05E+00	—
8	2.22E-01	2.07	1.55E-01	2.00	1.29E+00	1.65
16	3.25E-02	2.77	2.21E-02	2.81	2.47E-01	2.38
32	4.09E-03	2.99	2.82E-03	2.97	4.63E-02	2.41
64	5.07E-04	3.01	3.53E-04	3.00	9.46E-03	2.29
128	6.31E-05	3.01	4.41E-05	3.00	2.10E-03	2.17
256	7.86E-06	3.00	5.50E-06	3.00	4.91E-04	2.10

Table: 1D advection of sine wave, P^0 elements with P^2 reconstruction.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Formulation Theoretical results and numerical experiments

Numerical experiments

N	$ \boldsymbol{e}_h _{L^{\infty}(\Omega)}$	α	$ \boldsymbol{e}_h _{L^2(\Omega)}$	α	$ \boldsymbol{e}_{h} _{H^{1}(\Omega,\mathscr{T}_{h})}$	α
4	5.82E-03	_	3.49E-03	_	3.65E-02	_
8	7.53E-05	6.27	4.43E-05	6,30	1.06E-03	5,11
16	9.07E-07	6.38	5.95E-07	6,22	3.58E-05	4,89
32	1.82E-08	5.64	8.70E-09	6,10	1.16E-06	4,95
64	3.41E-10	5.74	1.33E-10	6,03	3.67E-08	4,98

Table: 1D advection of sine wave, P^1 elements with P^5 reconstruction.

<ロト <回ト < 回ト < 回ト

Formulation Theoretical results and numerical experiments

Numerical experiments

N	$ e_h _{L^{\infty}(\Omega)}$	α	$ \boldsymbol{e}_h _{L^2(\Omega)}$	α	$ e_h _{H^1(\Omega,\mathscr{T}_h)}$	α
4	2.90E-03	_	1.85E-03	_	1.63E-02	_
8	7.75E-06	8.55	3.56E-06	9.02	1.03E-04	7.30
16	2.10E-08	8.53	6.64E-09	9.07	4.34E-07	7.89
32	7.21E-11	8.18	4.02E-11	7.37	1.76E-09	7.94

Table: 1D advection of sine wave, P^2 elements with P^8 reconstruction.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Thank you for your attention

< 17 ×

(4) (3) (4) (4) (4)