
A posteriori error estimates of the
discontinuous Galerkin method for

linear elliptic and parabolic problems
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A posteriori error estimates
◮ can be extracted from the discrete solution and given

data of the problem

◮ u - a weak solution of the problem, uh - its discrete
solution
usual form:

‖u − uh‖ ≤ cf(uh), (1)

where c is a constant and f is a function of the
discrete solution
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Discontinuous Galerkin method
◮ methods for stationary problems

⊲ Galerkin orthogonality principle
⊲ Helmholtz decomposition
⊲ duality principle

◮ nonstationary problem
⊲ Helmholtz decomposition
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Poisson’s equation - formulation
Let Ω ∈ R

d (d=2 or 3) be a bounded polyhedral domain
with a boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅. Let us
consider the problem:

−△u = f in Ω,

u = gD on ∂ΩD,

∇u · n = gN on ∂ΩN ,

(2)

where n denote the outward unit normal vector to ∂Ω,
gD ∈ H1/2(∂ΩD) and gN ∈ H−1/2(∂ΩN ). Let f ∈ L2(Ω).
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Poisson’s equation - notation
◮ Th, h > 0: a family of partitions of Ω into a finite

number of closed triangles in 2D and tetrahedra in
3D with mutually disjoint interiors

◮ ρK : the radius of the largest d-dimensional ball
inscribed into K

◮ hK = diam(K)

◮ F I
h , FD

h and FN
h denote the set of all interior edges,

edges on ∂ΩD and edges on ∂ΩN , respectively.

◮ FDN
h ≡ FD

h ∪ FN
h , Fh = F I

h ∪ FD
h ∪ FN

h

◮ ∀ Γ ∈ ∂Ω: either Γ ∈ FD
h , or Γ ∈ FN

h

◮ hΓ = diam(Γ)
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Poisson’s equation - notation
◮ nΓ: a unit normal vector to Γ ∈ Fh

◮ ∀ Γ ∈ F I
h : KL

Γ and KR
Γ denote elements, which share

this edge, the orientation of nΓ: pointed out of KL
Γ

◮ ∀ Γ ∈ FDN
h : the same orientation as the outward

normal to ∂Ω

Hs(Ω, Th) = {v; v|K ∈ Hs(K) ∀K ∈ Th}, (3)

‖v‖2
Hs(Ω,Th) =

∑

K∈Th

‖v‖2
Hs(K), (4)

Shp = {v; v ∈ L2(Ω), v|K ∈ P p(K)∀ K ∈ Th}, (5)
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Triangulation - assumptions
◮ shape regularity:

∃Cs > 0 :
hK

ρK
≤ Cs ∀ K ∈ Th, (6)

◮ local quasi-uniformity:

∃CH > 0 : hK ≤ CHhK′

∀ K, K
′

: ∂K ∩ ∂K
′

6= ∅.
(7)

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems – p.6



Poisson’s equation - notation
◮ For v ∈ H1(Ω, Th) we denote:

vLΓ = the trace of v|KL
Γ

on Γ, Γ ∈ F I
h , (8)

vRΓ = the trace of v|KR
Γ

on Γ, Γ ∈ F I
h , (9)

〈v〉Γ =
1

2
(vLΓ + vRΓ ), Γ ∈ F I

h , (10)

[v]Γ = vLΓ − vRΓ , Γ ∈ F I
h , (11)

vLΓ = the trace of v|KL
Γ

on Γ, Γ ∈ FDN
h , (12)

〈v〉Γ = [v]Γ = vLΓ , Γ ∈ FDN
h , (13)
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Discretization

akh(u, v) =
∑

K∈Th

∫

K
∇u · ∇v dx

−
∑

Γ∈FID
h

∫

Γ

(
〈∇u · n〉[v] − θ〈∇v · n〉[u]

)
dS,

(14)

F k
h (v) =

∫

Ω
fv dx+

∑

Γ∈FN
h

∫

Γ
gNv dS+θ

∑

Γ∈FD
h

∫

Γ
(∇v·n)gD dS,

(15)
where k ∈ {S,N, I}, θ = −1 is connected with the
symetric form, θ = 1 the nonsymetric form and θ = 0 the
incomplete form of the discontinuous Galerkin method.
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Discretization

Jσh (u, v) =
∑

Γ∈FID
h

∫

Γ
σ[u][v] dS, (16)

JσD(v) =
∑

Γ∈FD
h

∫

Γ
σgDv dS, (17)

σ|Γ =
CW

max{hKL
Γ

, hKR
Γ

}
for Γ ∈ F I

h , (18)

σ|Γ =
CW

hKL
Γ

for Γ ∈ FD
h , (19)

where CW is a suitable constant ensuring coercivity of
Bk,σh .
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Discretization

Bk,σh (u, v) = akh(u, v) + Jσh (u, v), k ∈ {S,N, I}, (20)

l
k,σ
h (v) = F k

h (v) + JσD(v), k ∈ {S,N, I}. (21)

Definition 1 Function uh is called a discontinuous
Galerkin approximation of the solution of the problem (2),
if it is the solution of one of the following problems:
Find uh ∈ Shp such that

Bk,σh (uh, vh) = l
k,σ
h (vh) ∀ vh ∈ Shp, (22)

where k ∈ {S,N, I}.
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Theorem 1 (Multiplicative trace inequality) There
exists a constant CM > 0 independent of v, h and K such
that

‖v‖2
∂K ≤ CM (‖v‖K |v|1,K+h−1

K ‖v‖2
K), K ∈ Th, v ∈ H1(K).

(23)

Theorem 2 (Inverse inequality) There exists a constant
CI > 0 independent of v, h and K such that

|v|1,K ≤ CIh
−1
K ‖v‖K , K ∈ Th, v ∈ P p(K). (24)
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A posteriori error estimate
Definition 2 Let u be the weak solution of (2) and uh be
its discontinuous Galerkin approximation. Let set

e = u − uh. (25)

◮ the so-called DG-norm:

|||v||| ≡
∑

K∈Th

∫

K
∇v·∇v dx+

∑

Γ∈FID
h

∫

Γ
σ[v][v] dS ∀v ∈ H1(Ω, Th)

(26)

◮ L2 norm
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Definition 3 (Oswald’s interpolation operator) Let set
V = H1

gD ,D(Ω) ≡ {v ∈ H1(Ω); v = gD on ∂ΩD} for mixed boundary conditions and

V = H1(Ω) for pure Neumann boundary conditions. Let NV be the set of all Lagrangian
nodes needed for construction of a function from Shp ∩ V . Oswald’s interpolation
operator IV

Os : Shp → Shp ∩ V depending on given boundary conditions is for
vh ∈ Shp defined by:

IV
Os(vh)(ν) =

1

|ων |

X

K∈ων

vh|K(ν), ν ∈ NV \NB
D (27)

= gD(ν), ν ∈ NB
D (28)

where ων = {K ∈ Th; ν ∈ K}, NB
D = {ν ∈ NV ; ν ∈ ∂ΩD}.
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Theorem 3 Let Th be conforming or nonconforming mesh consisting
of triangles in 2D and tetrahedra in 3D. Assume that triangulation is
regular and locally quasi-uniform. Let gD be the restriction to ∂ΩD of a
function in Shp ∩H

1(Ω). For any vh ∈ Shp, i = 0, 1 hold:

∑

K∈Th

‖vh−IV
Os(vh)‖2

i,K ≤ C2

O2




∑

Γ∈FI

h

h1−2i
Γ

‖[vh]‖2

Γ +
∑

Γ∈FD

h

h1−2i
Γ

‖vh − gD‖2

Γ


 .

(29)

where CO2 is a constant independent of h and vh.
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Galerkin orthogonality of the error
Theorem 4 There holds:

∑

K∈Th

‖∇e‖2
K ≤ c




∑

K∈Th

h2
K‖f + △uh‖

2
K +

∑

Γ∈FI
h

hΓ‖[∂nuh]‖
2
Γ

+
∑

Γ∈FN
h

hΓ‖gN − ∂nuh‖
2
Γ + C2

W

∑

Γ∈FI
h

h−1
Γ ‖[uh]‖

2
Γ

+C2
W

∑

Γ∈FD
h

h−1
Γ ‖gD − uh‖

2
Γ


 ,

(30)

where a constant c is independent of h and CW .
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Duality principle
◮ Ω: a convex domain

◮ Neumann’s boundary condition on the whole
boundary

◮ Let φ ∈ {v; 1
|Ω|

∫
Ω v dx = 0} be the solution of the dual

problem:

−△φ = e in Ω,

∇φ · n = 0 on ∂Ω,
(31)

and
∃C > 0 : ‖φ‖2,Ω ≤ C‖e‖Ω. (32)

◮ conforming, regular and locally quasi-uniform system
of partitions {Th}h>0 consisting of triangles in 2D and
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Duality principle
Theorem 5 There holds:

‖e‖Ω ≤ c




∑

K∈Th

‖f + △uh‖
2
Kh4

K +
∑

Γ∈FI
h

‖[∇uh · n]‖2
Γh3

Γ

+
∑

Γ∈FN
h

‖gN −∇uh · n‖
2
Γh3

Γ +
∑

Γ∈FI
h

σ2h3
Γ‖[uh]‖

2
Γ

+
∑

Γ∈FI
h

hΓ‖[uh]‖
2
Γ + 2

∑

Γ∈FI
h

h−1
Γ ‖[uh]‖

2
Γ




1/2

,

(33)

where a constant c is independent of h.
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Helmholtz decomposition
Theorem 6 (About Helmholtz decomposition) There
exists decomposition

∇he = ∇φ + curl χ, (34)

where φ ∈ H1
D(Ω) ≡ {v ∈ H1(Ω); v = 0 on ∂ΩD} is the

solution of the problem
∫

Ω
∇φ · ∇v dx =

∫

Ω
∇he · ∇v dx ∀v ∈ H1

D(Ω), (35)

χ ∈ H(curl,Ω) and n · curl χ = 0 on ∂ΩN .
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Helmholtz decomposition
Theorem 7 (Properties of the Helmholtz
decomposition) Helmholtz decomposition (34) is
orthogonal in the sense that

‖∇he‖
2
Ω = ‖∇φ‖2

Ω + ‖curl χ‖2
Ω. (36)

In addition, the estimate

‖∇φ‖Ω + ‖curl χ‖Ω ≤ 2|e|H1(Ω,Th) (37)

holds.
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Discrete normal flux

Σn(uh) ≡





〈∂n(uh)〉 − σ[uh], on ∂K ∩ F I
h

∂n(uh) − σ(uh − gD), on ∂K ∩ FD
h

gN , on ∂K ∩ FN
h ,

(38)

where

σ|Γ =
CW

max{hKL
Γ

, hKR
Γ

}
for Γ ∈ F I

h (39)

and

σ|Γ =
CW

hKL
Γ

for Γ ∈ FD
h , (40)

respectively.
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Discrete normal flux
◮ Properties:

∫

K
f dx +

∫

∂K
Σn(uh) = 0 for ∀K ∈ Th, (41)

∑

K∈Th

∫

∂K\∂ΩD

n · ∇uφ dS =
∑

K∈Th

∫

∂K\∂ΩD

Σn(uh)φ dS. (42)
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Theorem 8 There holds:
∑

K∈Th

‖∇e‖2
K ≤ c

∑

K∈Th

(
h2
K‖f + △uh‖

2
K

+hK‖Σn(uh) − ∂nuh‖
2
∂K∩FIN

h
+ h−1

K ‖[uh]‖
2
∂K∩FID

h

)
,

(43)

where c is independent of h.
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A nonstationary problem
Let Ω ∈ R

d (d=2 or 3) be a bounded polyhedral domain,
T > 0 and QT = Ω × (0, T ). Let us consider the problem:

∂u
∂t −△u = f in QT ,

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω.

(44)

Assume that the data satisfy the following conditions:

f ∈ C(0, T ;H−1(Ω)),

u0 ∈ L2(Ω).
(45)
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Definition 4 The weak solution of the problem (44) is
defined as a function u ∈ L2(0, T ;H1

0 (Ω)) satisfying the
conditions:

〈∂u(t)∂t , v〉 +
∫
Ω ∇u(t) · ∇v dx = 〈f(t), v〉

for ∀v ∈ H1
0 (Ω) s.v. t ∈ (0, T ),

u(x, 0) = u0(x) in Ω,

(46)

where 〈·, ·〉 denotes the duality pairing between H1
0 (Ω)

and H−1(Ω).
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Time discretization
◮ A partition of [0, T ]: 0 = t0 < t1 < ... < tN̄ = T

◮ Notation: τn = tn − tn−1, τ = max
1≤n≤N̄

τn

◮ The problem (46) is discretized in time by a backward
Euler scheme:

Find a sequence {un}1≤n≤N̄ , un ∈ H1
0 (Ω) such that

∫

Ω

un − un−1

τn
v dx+

∫

Ω

∇un · ∇v dx =

∫

Ω

fnv dx for ∀v ∈ H1

0 (Ω),

(47)

where fn ≡ f(·, tn).

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems – p.25



Discretization in space
◮ discontinuous Galerkin methods (SIPG, NIPG, IIPG)

◮ On each time level is considered a system {Thn}h>0

of partitions of Ω consisting of triangles in 2D and
tetrahedra in 3D.

◮ The set of all interior edges and edges on boundary
(∂ΩD = ∂Ω) is denoted by F I

hn and FD
hn, respectively.

◮ Set F ID
hn = F I

hn ∪ FD
hn, hn = max

K∈Thn

hK

◮ The solution of the problem (47) is approximated by
piecewise linear functions:

Snh1 ≡ {v; v ∈ L2(Ω), v|K ∈ P 1(K)∀ K ∈ Thn}. (48)
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Triangulation - assumptions

Let triangulations {Thn}h>0,1≤n≤N̄ be regular and locally
quasi-uniform.

Assume that there exists a triangulation T̃hn satisfying (6)
and (7) which is a refinement of both Thn−1 and Thn,

1 ≤ n ≤ N̄ and such that

∃CHT > 0 : sup
1≤n≤N̄

sup
K∈eThn

sup
K′∈Thn,K⊂K′

:
hK′

hK
< CHT .

(49)
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Full discretization
For a given approximation u0

h ∈ S0
h1 of an initial condition

u0 find a sequence {unh}1≤n≤N̄ , unh ∈ Snh1 such that

∫

Ω

un
h − un−1

h

τn
vh dx+

∑

K∈Thn

∫

K

∇un
h · ∇vh dx−

∑

Γ∈FID

hn

∫

Γ

〈∇un
h · n〉[vh] dS

+θ
∑

Γ∈FID

hn

∫

Γ

〈∇vh · n〉[un
h] dS +

∑

Γ∈FID

hn

∫

Γ

σ[un
h][vh] dS =

∫

Ω

fnvh dx

for ∀ vh ∈ Sn
h1,

(50)

where θ = −1, 1 and 0 is connected with the symetric
form, the nonsymetric form and the incomplete form of
discontinuous Galerkin method, respectively.
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Definition 5 Let {un}1≤n≤N̄ be the semi-discrete solution
and {unh}1≤n≤N̄ be the discrete solution of (44).
Then we set

{en}1≤n≤N̄ = {un − unh}1≤n≤N̄ . (51)

Lemma 1 Let a triangulation Thn satisfies (6) and (7).
Then there exists an operator ΠK,p : H1(K) → P p(K) and
a constant CA > 0 such that

|ΠK,p(v)− v|q,K ≤ CAh
µ−q
K |v|µ,K ∀ v ∈ Hs(K) ∀K ∈ Thn,

(52)
where µ = min(p + 1, s), 0 ≤ q ≤ s and p, s ≥ 1 are
integers.
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Lemma 2 Let a triangulation Thn satisfies (6) and (7). The
operator Πhp : H1(Ω, Thn) → Snhp is defined by

Πhp|K = ΠK,p ∀K ∈ Thn, (53)

and

|Πhp(v)−v|Hq(Ω,Thn) ≤ CAhµ−qn |v|Hµ(Ω,Thn) ∀ v ∈ Hs(Ω, Thn),
(54)

where µ = min(p + 1, s), 0 ≤ q ≤ s and p, s ≥ 1 are
integers.
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Definition 6 The operator I0
hn : H1(Ω, T̃hn) → Snh1 ∩H1

0 (Ω)

is defined by

I0
hn(v) = I0

Os(Πh1(v)) ∀ v ∈ H1(Ω, T̃hn), (55)

where I0
Os is Oswald’s operator corresponding to the

homogeneous Dirichlet boundary condition.
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Definition 7 Let n ≥ 1. The local spatial error estimator
is defined by

ηnK = hK

∥∥∥∥∥fn −
unh − un−1

h

τn

∥∥∥∥∥
K

+ h
1/2
K ‖∇unh · n‖∂K + ‖unh‖H1/2(∂K)

+
∑

Γ∈FID
hn ∩FK

(
h
−1/2
Γ ‖[unh]‖Γ + h

1/2
Γ ‖[unh]‖Γ

)
,

(56)

where FK denotes the set of all edges and faces of a
triangle and tetrahedra K, respectively.
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Lemma 3 The error en satisfies

∑

K∈eThn

∫

K
∇en · ∇vh dx =

∫

Ω

en−1 − en

τn
vh dx

+ θ
∑

Γ∈FI
hn

∫

Γ
〈∇vh · n〉[u

n
h] dS ∀ vh ∈ Snh1 ∩ H1

0 (Ω). (57)

Let us consider the splitting of the gradient of the error:
∇en = ∇φn + curl χn, then

∑

K∈eThn

‖∇en‖2
K =

∑

K∈eThn

∫

K
∇en · ∇φn dx

︸ ︷︷ ︸
=:ψ

+
∑

K∈eThn

∫

K
∇encurl χn

(58)
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Lemma 4 The error en satisfies

∑

K∈eThn

∫

K
∇en · ∇φ dx =

∫

Ω
(fn −

un − un−1

τn
)φ dx

−
∑

K∈eThn

∫

∂K
∇unh · nφ dS ∀φ ∈ H1

0 (Ω). (59)

∑

K∈eThn

∫

K
∇encurl χ dx = −

∑

K∈eThn

∫

∂K
unhcurl χ · n dS

∀χ ∈ (H1(Ω))k, (60)

where k = 1 for d = 2 and k = 3 for d = 3.
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τnψ =
∑

K∈eThn

∫

K

(en − en−1)((en − φn) − I0

hn(en − φn)) dx

+
∑

K∈eThn

∫

K

(en − en−1)I0

hn(en − φn) dx

+
∑

K∈eThn

∫

K

enen−1 dx−
∑

K∈eThn

‖en‖2

K dx

+ τn
∑

K∈eThn

∫

K

(fn −
un

h − un−1

h

τn
)(φn − I0

hnφ
n) dx

− τn
∑

K∈eThn

∫

∂K

∇un
h · n(φn − I0

hnφ
n) dS

+ τnθ
∑

Γ∈FI

hn

∫

Γ

〈∇I0

hnφ
n · n〉[un

h] dS .

(61)

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems – p.35



Theorem 9 (Upper error bound) Let {un}1≤n≤N̄ be the semi-discrete
solution and {un

h}1≤n≤N̄ be the discrete solution of (44). Let
1 ≤ T̄ ≤ N̄ . Then the error en defined in 5 satisfies

∑

K∈eT
hT̄

‖eT̄ ‖2

K +
T̄∑

n=1

τn
∑

K∈eThn

‖∇en‖2

K

≤
∑

K∈eTh1

‖e0‖2

K +

T̄∑

n=1

C1(η
n)2

+

T̄∑

n=1

C2(η
n)2 max{h2

n, τn},

(62)

where constants C1, C2 > 0.
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◮ fτ - piecewise constant and equal to f(tn) on each
interval (tn−1, tn], 1 ≤ n ≤ N̄

◮ {un}0≤n≤N̄ 99K uτ

uτ (t) =
tn − t

τn
un−1 +

t − tn−1

τn
un ∀t ∈ [tn−1, tn], 1 ≤ n ≤ N̄ .

(63)

Definition 8 Let u be the weak solution and {un}1≤n≤N̄

be the semi-discrete solution of (44). Then we set

eτ = u − uτ , (64)

where uτ is precisely as in (63).
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Definition 9 Let 1 ≤ n ≤ N̄ . The time error indicator is
defined by

ηnt = τ
1/2
n |unh − un−1

h |
H1(Ω,eThn)

. (65)
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Theorem 10 (Time upper error bound)
Let {un}1≤n≤N̄ be the semi-discrete solution
and {unh}1≤n≤N̄ be the discrete solution of (44). Let
1 ≤ T̄ ≤ N̄ . Then

‖eτ (tT̄ )‖2
Ω +

∫ tT̄

0
‖∇eτ (s)‖

2
Ω ds ≤ 2‖f − fτ‖

2
L2(0,tT̄ ;H−1(Ω))

+ 2
T̄∑

n=1

(ηnt )2 + 16
T̄∑

n=1

∫ tn

tn−1

|(uτ − uhτ )(s)|
2
H1(Ω,eThn)

ds.

(66)
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Upper error bound - full discretization
Definition 10 Let 1 ≤ n ≤ N̄ . The full error indicator at
time tn is defined by

E(tn)
2 = ‖u(tn) − un‖2

Ω + ‖un − unh‖
2
Ω +

∥∥∥∥
∂eτ

∂t

∥∥∥∥
2

L2(0,tn;H−1(Ω))

+

∥∥∥∥
∂(uτ − uhτ )

∂t

∥∥∥∥
2

L2(0,tn;H−1(Ω))

+

∫ tn

0
‖∇(u − uτ )(s)‖

2
Ω ds

+

∫ tn

0
|(uτ − uhτ )(s)|

2
H1(Ω,eThn)

ds.

(67)
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Upper error bound - full discretization
Theorem 11 (Full error bound) Assume that the
assumptions of Theorems 9 and 10 are satisfied. Let
1 ≤ T̄ ≤ N̄ . Then

E(tT̄ )2 ≤ 11
T̄∑

n=1

(ηnt )2 + 178τ1

∑

K∈eTh1

∥∥∇e0
∥∥2

K
+ C3

∑

K∈eTh1

‖e0‖2
K

+ 11‖f − fτ‖
2
L2(0,tT̄ ;H−1(Ω)) + C4

T̄∑

n=1

(ηn)2

+ C5

T̄∑

n=1

(ηn)2 max{h2
n, τn},

(68)

where constants C3, C4 and C5 > 0.
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