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INTRODUCTION

• a priori error estimates

• a posteriori error estimates

• effectivity index
• asymptotical exactness

• computational error estimates

• h-adaptive FEM

• p-adaptive FEM

• hp-adaptive FEM

• goal-oriented hp-adaptive FEM

I. Babuška, W. C. Rheinboldt: A posteriori error estimates for the
finite element method. Internat. J. Numer. Methods Engrg. 12
(1978), 1597–1615.
I. Babuška, W. C. Rheinboldt: Error estimates for adaptive finite
element computations. SIAM J. Numer. Anal. 15 (1978), 736–754.



AUTOMATIC hp-ADAPTIVITY

1. Generate the initial mesh Th.
2. Solve the problem on Th.
3. Compute the (global) error estimate. If the estimate is below

the tolerance given, stop.
4. Compute an (analytical or computational) error indicator ηT

for every element T ∈ Th.
5. Construct a new mesh Th by refining some elements and by

increasing polynomial degrees of some elements in the parts of
the domain with the largest error indicated.

6. Go to Step 2.



AUTOMATIC hp-ADAPTIVITY

L. Demkowicz: Computing with hp-Adaptive Finite Elements. Vol.
1, 2. Chapman & Hall/CRC, Boca Raton, FL, 2007, 2008.

C. Schwab: p- and hp-Finite Element Methods. Clarendon Press,
Oxford, 1998.

P. Šoĺın, K. Segeth, I. Doležel: Higher-Order Finite Element
Methods. Chapman & Hall/CRC, Boca Raton, FL, 2004.



SOME CLASSES OF ANALYTIC A POSTERIORI ERROR
ESTIMATORS

• residual estimator

• implicit estimator (based on the solution of local problems)

• hierarchic basis (multilevel) estimator

• gradient recovery based estimator (the averaging of gradient)

• global estimator (independent of the way the approximate
solution is computed)



A SIMPLE SETTING OF THE MODEL PROBLEM

BIHARMONIC EQUATION WITH DIRICHLET BOUNDARY
CONDITIONS
Kirchhoff model of the vertical displacement of the mid-surface of
a clamped plate subject to bending

4th order elliptic equation

∆2u = f in Ω,

Ω ⊂ R2 is a connected bounded polygonal domain with boundary
Γ , the Dirichlet boundary conditions are

u =
∂u

∂n
= 0 on Γ,

f ∈ L2(Ω)



LOCAL RESIDUAL ESTIMATES FOR THE MODEL PROBLEM

WEAK SOLUTION
weak solution u ∈ H2

0 (Ω) of the problem: the identity∫
Ω

∆u∆v =

∫
Ω

fv , i.e. 〈F (u), v〉 = 0

to be satisfied for all test functions v ∈ H2
0 (Ω)



APPROXIMATE SOLUTION

family of regular triangulations Th, h > 0

space Xh ⊂ H2
0 (Ω) of all continuous piecewise polynomial

functions of degree at most k ≥ 1 and corresponding to Th

approximation of f : construct

fh =
∑
T∈Th

πl ,T f ,

where πl ,T is the L2 projection onto the space Pl(T ) of
polynomials of a fixed degree at most l ≥ 0 on T

approximate solution uh ∈ Xh of the problem: the identity∫
Ω

∆uh∆vh =

∫
Ω

fhvh, i.e. 〈Fh(uh), vh〉 = 0

to be satisfied for all test functions vh ∈ Xh



LOCAL RESIDUAL ERROR ESTIMATOR

local error of the approximation of f by fh on the triangle T ∈ Th

εT = ‖f − fh‖0;T

residual error estimator on the triangle T ∈ Th

ηV ,T =

(
h4
T‖∆2uh − fh‖2

0;T

+
∑

E∈E(T )∩Eh,Ω

(
hE‖[∆uh]E‖2

0;E + h3
E‖[nE∇∆uh]E‖2

0;E

))1/2

R. Verfürth: A Review of A Posteriori Error Estimation and
Adaptive Mesh Refinement Techniques. John Wiley, Chichester,
and B. G. Teubner, Stuttgart, 1996.



Theorem. Let u and uh be the weak and the approximate solutions
of the problem. Then there are positive constants c1, . . . , c6 that
depend only on the ratio hT/ρT and the integers k and l such that
the estimates

‖u − uh‖2 ≤c1

∑
T∈Th

η2
V ,T

1/2

+ c2

∑
T∈Th

h4
T ε2

T

1/2

+ c3‖F (uh)− Fh(uh)‖+ c4‖Fh(uh)‖

and

ηV ,T ≤ c5‖u − uh‖2;ωT
+ c6

 ∑
T ′⊂ωT

h4
T ′ε

2
T ′

1/2

for all T ∈ Th hold. The computable quantities ‖F (uh)− Fh(uh)‖
and ‖Fh(uh)‖ represent the consistency error of the discretization
and the residual of the discrete problem.



THE SAME SIMPLE SETTING OF THE MODEL PROBLEM

BIHARMONIC EQUATION WITH DIRICHLET BOUNDARY
CONDITIONS

4th order elliptic equation

∆2u = f in Ω,

Ω ⊂ R2 is a connected bounded polygonal domain with boundary
Γ , the Dirichlet boundary conditions are

u =
∂u

∂n
= 0 on Γ,

f ∈ H−1(Ω)



LOCAL RESIDUAL ESTIMATES FOR THE MIXED
FORMULATION OF THE PROBLEM

WEAK SOLUTION
{w = ∆u, u} ∈ X × V , V = H1

0 (Ω) and X = H1(Ω)

continuous bilinear forms

a(w , z) =

∫
Ω

wz on X ×X and b(z , u) =

∫
Ω
∇z ·∇u on X ×V

with scalar-valued functions u, w , and z

Ciarlet-Raviart weak formulation: Find {w , u} ∈ X × V such that

a(w , z) + b(z , u) = 0 for all z ∈ X ,

b(w , v) +

∫
Ω

fv = 0 for all v ∈ V



APPROXIMATE SOLUTION

family of uniformly regular triangulations Th, h > 0

second order approximation in P2(T ), the space of polynomials of
the second degree on T

finite element spaces

Xh = {xh ∈ X | xh|T ∈ P2(T ) for all T ∈ Th},
Vh = {vh ∈ V | vh|T ∈ P2(T ) for all T ∈ Th}

discrete formulation of the problem: Find {wh, uh} ∈ Xh × Vh such
that

a(wh, zh) + b(zh, uh) = 0 for all zh ∈ Xh,

b(wh, vh) +

∫
Ω

fvh = 0 for all vh ∈ Vh



LOCAL RESIDUAL ERROR ESTIMATORS

put fh = π0,T f and εT = ‖f − fh‖0;T on each triangle T ∈ Th

local residuals

PT (uh) = −∆uh + wh, RT (wh) = −∆wh + fh,

PE (uh) =

[
∂uh

∂n

]
E

, RE (wh) =

[
∂wh

∂n

]
E

local residual error estimators

η2
C ,T = |T |‖Ph(uh)‖2

0;T + 1
2

∑
E∈E(T )

hE‖PE (uh)‖2
0;E ,

η̃2
C ,T = |T |‖Rh(uh)‖2

0;T + 1
2

∑
E∈E(T )∩Eh,Ω

hE‖PE (uh)‖2
0;E + |T |ε2

T

errors
eh(u) = u − uh, eh(w) = w − wh



Theorem. Let {w , u} ∈ X × V and {wh, uh} ∈ Xh × Vh be the
weak and the approximate solutions of the problem. Then there
are positive constants C1 and C2 independent of h such that the
estimates

‖eh(u)‖1+h‖eh(w)‖0 ≤ C1


∑

T∈Th

η2
C ,T

1/2

+ h2

∑
T∈Th

η̃2
C ,T

1/2


and

ηC ,T+h2η̃C ,T ≤ C2

|eh(u)|1;ωT
+ hT‖eh(w)‖0;ωT

+ h3
T

∑
T ′⊂ωT

εT ′


for all T ∈ Th hold.

A. Charbonneau, K. Dossou, R. Pierre: A residual-based a
posteriori error estimator for the Ciarlet-Raviart formulation of the
first biharmonic problem. Numer. Methods Partial Differential
Equations 13 (1997), 93–111.



A MORE GENERAL SETTING OF THE MODEL PROBLEM

FOURTH ORDER EQUATION WITH DIRICHLET BOUNDARY
CONDITIONS

div2Λ(x ,D2u) = f in Ω,

D2u is the Hessian matrix of a function u : Ω → R, u ∈ H2(Ω),
Λ = [λik ], Λ : Ω × Rn×n → Rn×n is a matrix-valued function
measurable and bounded with respect to the variable x ∈ Ω and of
class C2 with respect to the matrix variable Θ ∈ Rn×n, the domain
Ω ⊂ Rn has a piecewise C1 boundary Γ , and the Dirichlet
boundary conditions are

u =
∂u

∂n
= 0 on Γ,

f ∈ L2(Ω)



GLOBAL ESTIMATES FOR THE APPROXIMATE SOLUTION
OBTAINED IN AN ARBITRARY WAY

WEAK SOLUTION
assume that the Jacobian arrays

Λ′(x , Θ) =
∂Λ(x , Θ)

∂Θ
=

[
∂λrs(x , Θ)

∂ϑik

]n

i ,k,r ,s=1

∈ R(n×n)2

(tensor of order 4) are symmetric and positive definite, i.e. that
there are constants 0 < m ≤ M such that

m‖Φ‖2
F ≤ (Λ′(x , Θ)Φ)�Φ ≤ M‖Φ‖2

F for all x ∈ Ω, Θ,Φ ∈ Rn×n.

with � denoting the double-dot (entry by entry) matrix product
and F the Frobenius matrix norm

assume further that the mapping Λ′ : Ω × Rn×n → R(n×n)2 is
Lipschitz continuous in the matrix variable Θ ∈ Rn×n with a
Lipschitz constant L



WEAK SOLUTION CONTINUED

a counterpart of the Friedrichs inequality is

‖w‖0 ≤ CΩ‖D2w‖0

for all w ∈ H2
0 (Ω) and a suitable constant CΩ > 0

weak solution u ∈ H2
0 (Ω) of the problem: the identity∫

Ω
Λ(x ,D2u)� D2v −

∫
Ω

fv = 0

to be satisfied for all test functions v ∈ H2
0 (Ω)



APPROXIMATE SOLUTION

any function ū ∈ H1
0 (Ω) can be considered to be the approximate

solution (the way it has been computed is not of interest)

measure of the error

E (ū) =

∫
Ω

(Λ(x ,D2ū)− Λ(x ,D2u))� (D2ū − D2u)

=

∫
Ω

Λ(x ,D2ū)� (D2ū − D2u)−
∫

Ω
f (ū − u)



GLOBAL ERROR ESTIMATORS

ηK (Ψ,w , ū) =

(
m−1/2CΩ‖div2Ψ − f ‖0 + 1

2Lm−3/2δ(Ψ,w , ū)

+
(
(Λ(x ,D2ū)− Ψ,D2ū − Λ−1(x , Ψ))0

+ 1
2Lm−1δ(Ψ,w , ū)‖D2ū − Λ−1(x , Ψ)‖0

)1/2
)2

,

δ(Ψ,w , ū) = (M‖Λ−1(x , Ψ)− D2w‖0 + CΩ‖div2Ψ − f ‖0)

× ‖D2ū − Λ−1(x , Ψ)‖∞,

Ψ ∈ H(div2, Ω) ∩ L∞(Ω,Rn×n) is an arbitrary matrix-valued and
w ∈ H2

0 (Ω) an arbitrary scalar-valued function, m and M are the
positive definiteness constants, CΩ the Friedrichs inequality
constant, and L the Lipschitz continuity constant of Λ′

another, computationally more friendly estimator η̃K (Ψ,w , ū)



Theorem. Let u ∈ H2
0 (Ω) be the weak solution of the problem and

ū ∈ W 2,∞(Ω) an arbitrary function. Then

E (ū) ≤ ηK (Ψ,w , ū)

for any Ψ ∈ H(div2, Ω) ∩ L∞(Ω,Rn×n) and w ∈ H2
0 (Ω).

the same statement holds for η̃K (Ψ,w , ū) with some other class of
matrix-valued functions Ψ

Theorem. If the weak solution u ∈ W 2,∞(Ω) then the estimator
ηK is sharp, i.e.

min
Ψ∈H(div2,Ω)∩L∞(Ω,Rn×n), w∈H2

0

ηK (Ψ,w , ū) = E (ū).

J. Karátson, S. Korotov: Sharp upper global a posteriori error
estimates for nonlinear elliptic variational problems. Appl. Math.
54 (2009), 297–336.



PROPERTIES OF ANALYTICAL A POSTERIORI ERROR
ESTIMATORS

ADVANTAGES

• computed from the approximate solution

• fast/cheap computation

• asymptotical exactness, often good behavior even for finite h

DRAWBACKS

• usually depend on unknown constants or functions

• usually constructed only for lowest-order polynomial
approximation



PROPERTIES OF COMPUTATIONAL ERROR ESTIMATORS
(REFERENCE SOLUTIONS)

• standard for ODE’s

• quite universal, but more expensive: if uh,p is the
approximation on the current mesh then uref = uh/2,p+1

• provide more complex information on the behavior of the error

• used in multilevel solution procedures

• used in adaptive (in particular hp-adaptive and goal-oriented)
algorithms


